Min Qiu , Xue-Li Yang , Zi-Xuan Zhao , Qiu-Ping Luo , Ling Chen , Jun Du , Xing Fan , Bing-Xin Lei
{"title":"Water-induced formation of Cs2AgBiBr6/BiOBr heterostructure with enhanced visible-light photocatalytic activity","authors":"Min Qiu , Xue-Li Yang , Zi-Xuan Zhao , Qiu-Ping Luo , Ling Chen , Jun Du , Xing Fan , Bing-Xin Lei","doi":"10.1016/j.apt.2024.104679","DOIUrl":null,"url":null,"abstract":"<div><div>The separation and transfer of photogenerated charges are limited by the deep energy defects and high exciton binding energy of Cs<sub>2</sub>AgBiBr<sub>6</sub> (CABB). The creation of heterostructure is a great promising path to solve this obstacle. In this paper, BiOBr (BOB) nanosheets epitaxially grew on the surface of CABB octahedrons through immersing CABB into in water-solution with the assistance of ethanol, thereby creating an interesting CABB/BOB heterojunction. The CABB/BOB heterostructure markedly enhances water stability, preserving its structure and morphology even after being submerged in a mixture of ethanol and water for 100 h. The CABB/BOB photocatalyst exhibited significantly enhanced photocatalytic activity towards the degradation of Rhodamine B in comparison to its individual pristine components, namely CABB and BOB. Specifically, the advanced CABB/BOB−90 photocatalyst attains a degradation efficiency of 98 % within 40 min, significantly surpassing the initial CABB and BOB photocatalysts by approximately 1.3 and 4.1 times, respectively. The heightened photocatalytic activity is attributable to the formation of a tightly integrated heterojunction interface, which promotes the efficient separation of charge carriers.</div></div>","PeriodicalId":7232,"journal":{"name":"Advanced Powder Technology","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921883124003558","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The separation and transfer of photogenerated charges are limited by the deep energy defects and high exciton binding energy of Cs2AgBiBr6 (CABB). The creation of heterostructure is a great promising path to solve this obstacle. In this paper, BiOBr (BOB) nanosheets epitaxially grew on the surface of CABB octahedrons through immersing CABB into in water-solution with the assistance of ethanol, thereby creating an interesting CABB/BOB heterojunction. The CABB/BOB heterostructure markedly enhances water stability, preserving its structure and morphology even after being submerged in a mixture of ethanol and water for 100 h. The CABB/BOB photocatalyst exhibited significantly enhanced photocatalytic activity towards the degradation of Rhodamine B in comparison to its individual pristine components, namely CABB and BOB. Specifically, the advanced CABB/BOB−90 photocatalyst attains a degradation efficiency of 98 % within 40 min, significantly surpassing the initial CABB and BOB photocatalysts by approximately 1.3 and 4.1 times, respectively. The heightened photocatalytic activity is attributable to the formation of a tightly integrated heterojunction interface, which promotes the efficient separation of charge carriers.
期刊介绍:
The aim of Advanced Powder Technology is to meet the demand for an international journal that integrates all aspects of science and technology research on powder and particulate materials. The journal fulfills this purpose by publishing original research papers, rapid communications, reviews, and translated articles by prominent researchers worldwide.
The editorial work of Advanced Powder Technology, which was founded as the International Journal of the Society of Powder Technology, Japan, is now shared by distinguished board members, who operate in a unique framework designed to respond to the increasing global demand for articles on not only powder and particles, but also on various materials produced from them.
Advanced Powder Technology covers various areas, but a discussion of powder and particles is required in articles. Topics include: Production of powder and particulate materials in gases and liquids(nanoparticles, fine ceramics, pharmaceuticals, novel functional materials, etc.); Aerosol and colloidal processing; Powder and particle characterization; Dynamics and phenomena; Calculation and simulation (CFD, DEM, Monte Carlo method, population balance, etc.); Measurement and control of powder processes; Particle modification; Comminution; Powder handling and operations (storage, transport, granulation, separation, fluidization, etc.)