Dietary thiamine enhances thiamine transport, carbohydrate absorption, glycolysis, and antioxidant properties in Macrobrachium nipponense when fed a high-carbohydrate diet
{"title":"Dietary thiamine enhances thiamine transport, carbohydrate absorption, glycolysis, and antioxidant properties in Macrobrachium nipponense when fed a high-carbohydrate diet","authors":"Yonghui Jian , Jiaxin Song , Zhiyuan Chen, Dongsheng Zhou, Youqin Kong, Yujie Liu, Yixiang Zhang, Hongfeng Bai, Zhili Ding","doi":"10.1016/j.aqrep.2024.102400","DOIUrl":null,"url":null,"abstract":"<div><div>Thiamine serves as a cofactor of key enzymes involved in glucose metabolism, and its regulatory role in high-carbohydrate diet has not been reported in crustaceans. In this study, six types of isonitrogen and isolipid diets were formulated at two carbohydrate levels (15 % corn starch for the low-carbohydrate group; 30 % corn starch for the high-carbohydrate group) and three concentrations of thiamine (0, 80 and 160 mg/kg) in <em>Macrobrachium nipponense</em>. The carbohydrate metabolism, antioxidant status, and mRNA expression of genes involved in thiamine transport and autophagy of prawns were investigated. The high-carbohydrate diet supplemented with 160 mg/kg thiamine increased the thiamine transporter 1 (<em>SLC19A2</em>) expression compared to a low-carbohydrate diet or other thiamine concentrations. Supplementation with 160 mg/kg thiamine under a high carbohydrate level significantly increased the pyruvate and lactate content in the hepatopancreas. When supplemented with either 0 or 160 mg/kg thiamine, a high dietary carbohydrate significantly increased glucose transporter 4 (<em>GLUT4</em>) and hexokinase (<em>HK</em>) mRNA expressions compared to a low-carbohydrate diet. Among the high-carbohydrate groups, prawns fed with 160 mg/kg thiamine showed significantly higher mRNA expression of pyruvate dehydrogenase-E1-α (<em>PDH-E1-α</em>) compared to those fed with 0 mg/kg thiamine. The activity of superoxide dismutase (SOD) was found to be highest in prawns fed 160 mg/kg thiamine. Supplementation of the carbohydrate diet with either 80 or 160 mg/kg thiamine led to a significant decrease in malondialdehyde (MDA) content accompanied by a significant decrease in glutathione (GSH) level, regardless of low or high carbohydrate levels. The unc-51 like autophagy activating kinase 1 (<em>ULK1</em>) mRNA expression was markedly influenced by both carbohydrate levels and thiamine concentration. Hence, the administration of 160 mg/kg thiamine can improve the thiamine transport, carbohydrate absorption, glycolysis and the antioxidant properties of <em>M. nipponense</em> when fed a high-carbohydrate diet.</div></div>","PeriodicalId":8103,"journal":{"name":"Aquaculture Reports","volume":"39 ","pages":"Article 102400"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Reports","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352513424004885","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Thiamine serves as a cofactor of key enzymes involved in glucose metabolism, and its regulatory role in high-carbohydrate diet has not been reported in crustaceans. In this study, six types of isonitrogen and isolipid diets were formulated at two carbohydrate levels (15 % corn starch for the low-carbohydrate group; 30 % corn starch for the high-carbohydrate group) and three concentrations of thiamine (0, 80 and 160 mg/kg) in Macrobrachium nipponense. The carbohydrate metabolism, antioxidant status, and mRNA expression of genes involved in thiamine transport and autophagy of prawns were investigated. The high-carbohydrate diet supplemented with 160 mg/kg thiamine increased the thiamine transporter 1 (SLC19A2) expression compared to a low-carbohydrate diet or other thiamine concentrations. Supplementation with 160 mg/kg thiamine under a high carbohydrate level significantly increased the pyruvate and lactate content in the hepatopancreas. When supplemented with either 0 or 160 mg/kg thiamine, a high dietary carbohydrate significantly increased glucose transporter 4 (GLUT4) and hexokinase (HK) mRNA expressions compared to a low-carbohydrate diet. Among the high-carbohydrate groups, prawns fed with 160 mg/kg thiamine showed significantly higher mRNA expression of pyruvate dehydrogenase-E1-α (PDH-E1-α) compared to those fed with 0 mg/kg thiamine. The activity of superoxide dismutase (SOD) was found to be highest in prawns fed 160 mg/kg thiamine. Supplementation of the carbohydrate diet with either 80 or 160 mg/kg thiamine led to a significant decrease in malondialdehyde (MDA) content accompanied by a significant decrease in glutathione (GSH) level, regardless of low or high carbohydrate levels. The unc-51 like autophagy activating kinase 1 (ULK1) mRNA expression was markedly influenced by both carbohydrate levels and thiamine concentration. Hence, the administration of 160 mg/kg thiamine can improve the thiamine transport, carbohydrate absorption, glycolysis and the antioxidant properties of M. nipponense when fed a high-carbohydrate diet.
Aquaculture ReportsAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
5.90
自引率
8.10%
发文量
469
审稿时长
77 days
期刊介绍:
Aquaculture Reports will publish original research papers and reviews documenting outstanding science with a regional context and focus, answering the need for high quality information on novel species, systems and regions in emerging areas of aquaculture research and development, such as integrated multi-trophic aquaculture, urban aquaculture, ornamental, unfed aquaculture, offshore aquaculture and others. Papers having industry research as priority and encompassing product development research or current industry practice are encouraged.