Bibhatsu Kuiri , Aloke Kumar Pathak , Nilanjana Sarkar , Amlan Das , Manish Dev Sharma , Ardhendu Sekhar Patra
{"title":"Deep learning prediction of novel hollow core photonic crystal fiber with tuned As2S3 − LiNbO3 ring for multimode applications","authors":"Bibhatsu Kuiri , Aloke Kumar Pathak , Nilanjana Sarkar , Amlan Das , Manish Dev Sharma , Ardhendu Sekhar Patra","doi":"10.1016/j.yofte.2024.103998","DOIUrl":null,"url":null,"abstract":"<div><div>Multimode capability in photonic crystal fiber (PCF) is an important feature in fiber development. This study presents an innovative Dual Ring Hollow core PCF (DRH-PCF), designed to support a large number of multimode operations with minimal loss and flat dispersion optimized in the wavelength range of 1.26 µm to 1.66 µm. The DRH-PCF structure comprises a high-purity silica matrix, featuring a unique configuration that includes a hollow core and high indexed Lithium niobate (LiNbO<sub>3</sub>)-Arsenic trisulfide (As<sub>2</sub>S<sub>3</sub>) dual rings of thickness 0.6 µm. This arrangement is complemented by a pattern of strategically placed air holes encircling the fiber. Our PCF is engineered to support an impressive 200 and more orbital angular momentum modes, with low confinement loss (∼10<sup>−5</sup> dB/m) and near-flat dispersion (∼3 ps/mm/km) and very large power fraction (∼0.99), while maintaining high mode purity of >95 %. Furthermore, the fiber exhibits a near-flat dispersion profile over a wide spectral range, with a measured dispersion of ∼6 ps/(nm·km) around the operational wavelength. Stability due to fiber bend is also investigated for extreme bend tolerance (Bend radii R<sub>B</sub>=1cm to 80 cm). Deep Learning prediction is used to train and predict the performance of the fiber and obtained remarkably close results (within 5 %). This combination of features makes our PCF an excellent candidate for diverse applications in high-capacity optical communication systems, sensing technologies, and nonlinear optics.</div></div>","PeriodicalId":19663,"journal":{"name":"Optical Fiber Technology","volume":"88 ","pages":"Article 103998"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fiber Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1068520024003432","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Multimode capability in photonic crystal fiber (PCF) is an important feature in fiber development. This study presents an innovative Dual Ring Hollow core PCF (DRH-PCF), designed to support a large number of multimode operations with minimal loss and flat dispersion optimized in the wavelength range of 1.26 µm to 1.66 µm. The DRH-PCF structure comprises a high-purity silica matrix, featuring a unique configuration that includes a hollow core and high indexed Lithium niobate (LiNbO3)-Arsenic trisulfide (As2S3) dual rings of thickness 0.6 µm. This arrangement is complemented by a pattern of strategically placed air holes encircling the fiber. Our PCF is engineered to support an impressive 200 and more orbital angular momentum modes, with low confinement loss (∼10−5 dB/m) and near-flat dispersion (∼3 ps/mm/km) and very large power fraction (∼0.99), while maintaining high mode purity of >95 %. Furthermore, the fiber exhibits a near-flat dispersion profile over a wide spectral range, with a measured dispersion of ∼6 ps/(nm·km) around the operational wavelength. Stability due to fiber bend is also investigated for extreme bend tolerance (Bend radii RB=1cm to 80 cm). Deep Learning prediction is used to train and predict the performance of the fiber and obtained remarkably close results (within 5 %). This combination of features makes our PCF an excellent candidate for diverse applications in high-capacity optical communication systems, sensing technologies, and nonlinear optics.
期刊介绍:
Innovations in optical fiber technology are revolutionizing world communications. Newly developed fiber amplifiers allow for direct transmission of high-speed signals over transcontinental distances without the need for electronic regeneration. Optical fibers find new applications in data processing. The impact of fiber materials, devices, and systems on communications in the coming decades will create an abundance of primary literature and the need for up-to-date reviews.
Optical Fiber Technology: Materials, Devices, and Systems is a new cutting-edge journal designed to fill a need in this rapidly evolving field for speedy publication of regular length papers. Both theoretical and experimental papers on fiber materials, devices, and system performance evaluation and measurements are eligible, with emphasis on practical applications.