Assessing the impact of the National Clean Air Programme in Uttar Pradesh's non-attainment cities: a prophet model time series analysis

IF 5 Q1 HEALTH CARE SCIENCES & SERVICES The Lancet regional health. Southeast Asia Pub Date : 2024-10-07 DOI:10.1016/j.lansea.2024.100486
Om Prakash Bera , U. Venkatesh , Gopal Krushna Pal , Siddhant Shastri , Sayantan Chakraborty , Ashoo Grover , Hari Shanker Joshi
{"title":"Assessing the impact of the National Clean Air Programme in Uttar Pradesh's non-attainment cities: a prophet model time series analysis","authors":"Om Prakash Bera ,&nbsp;U. Venkatesh ,&nbsp;Gopal Krushna Pal ,&nbsp;Siddhant Shastri ,&nbsp;Sayantan Chakraborty ,&nbsp;Ashoo Grover ,&nbsp;Hari Shanker Joshi","doi":"10.1016/j.lansea.2024.100486","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Uttar Pradesh, India's largest state, faces critical pollution levels, necessitating urgent action. The National Clean Air Programme (NCAP) targets a 40% reduction in particulate pollution by 2026. This study assesses the impact of NCAP on 15 non-attainment cities in Uttar Pradesh using the Prophet forecasting model.</div></div><div><h3>Methods</h3><div>Monthly data on AQI and <span><math><mrow><msub><mtext>PM</mtext><mn>10</mn></msub></mrow></math></span> concentrations from 2016 to 2023 were sourced from the Uttar Pradesh Pollution Control Board. Significant changes in mean AQI and <span><math><mrow><msub><mtext>PM</mtext><mn>10</mn></msub></mrow></math></span> levels from 2017 to 2023 were evaluated using the Friedman test. Prophet models forecast <span><math><mrow><msub><mtext>PM</mtext><mn>10</mn></msub></mrow></math></span> concentrations for 2025–26, with relative percentage changes calculated and model evaluation metrics assessed.</div></div><div><h3>Findings</h3><div>Most cities exhibited unhealthy air quality. Jhansi had the lowest AQI (72.73) in 2023, classified as ‘moderate’ by WHO standards. Gorakhpur consistently showed ‘poor’ AQI levels, peaking at 249.31 in 2019. Western Uttar Pradesh cities such as Ghaziabad, Noida, and Moradabad had significant pollution burdens. Predictions showed Bareilly with over a 70% reduction in <span><math><mrow><msub><mtext>PM</mtext><mn>10</mn></msub></mrow></math></span> levels, Raebareli 58%, Moradabad 55%, Ghaziabad 48%, Agra around 41%, and Varanasi 40%, meeting NCAP targets. However, Gorakhpur and Prayagraj predicted increases in <span><math><mrow><msub><mtext>PM</mtext><mn>10</mn></msub></mrow></math></span> levels by 50% and 32%, respectively. Moradabad's model showed the best performance with an <span><math><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></math></span> of 0.81, MAE of 17.27 <span><math><mrow><mi>μ</mi><mi>g</mi><mo>/</mo><msup><mi>m</mi><mn>3</mn></msup></mrow></math></span>, and MAPE of 0.10.</div></div><div><h3>Interpretation</h3><div>Forecasting <span><math><mrow><msub><mtext>PM</mtext><mn>10</mn></msub></mrow></math></span> concentrations in Uttar Pradesh's non-attainment cities offers policymakers substantial evidence to enhance current efforts. While existing measures are in place, our findings suggest that intensified provisions may be necessary for cities predicted to fall short of meeting program targets. The Prophet model's forecasts can pinpoint these at-risk areas, allowing for targeted interventions and regional adjustments to strategies. This approach will help promote sustainable development customized to each city's specific needs.</div></div><div><h3>Funding</h3><div>No funding was issued for this research.</div></div>","PeriodicalId":75136,"journal":{"name":"The Lancet regional health. Southeast Asia","volume":"30 ","pages":"Article 100486"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet regional health. Southeast Asia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772368224001367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Uttar Pradesh, India's largest state, faces critical pollution levels, necessitating urgent action. The National Clean Air Programme (NCAP) targets a 40% reduction in particulate pollution by 2026. This study assesses the impact of NCAP on 15 non-attainment cities in Uttar Pradesh using the Prophet forecasting model.

Methods

Monthly data on AQI and PM10 concentrations from 2016 to 2023 were sourced from the Uttar Pradesh Pollution Control Board. Significant changes in mean AQI and PM10 levels from 2017 to 2023 were evaluated using the Friedman test. Prophet models forecast PM10 concentrations for 2025–26, with relative percentage changes calculated and model evaluation metrics assessed.

Findings

Most cities exhibited unhealthy air quality. Jhansi had the lowest AQI (72.73) in 2023, classified as ‘moderate’ by WHO standards. Gorakhpur consistently showed ‘poor’ AQI levels, peaking at 249.31 in 2019. Western Uttar Pradesh cities such as Ghaziabad, Noida, and Moradabad had significant pollution burdens. Predictions showed Bareilly with over a 70% reduction in PM10 levels, Raebareli 58%, Moradabad 55%, Ghaziabad 48%, Agra around 41%, and Varanasi 40%, meeting NCAP targets. However, Gorakhpur and Prayagraj predicted increases in PM10 levels by 50% and 32%, respectively. Moradabad's model showed the best performance with an R2 of 0.81, MAE of 17.27 μg/m3, and MAPE of 0.10.

Interpretation

Forecasting PM10 concentrations in Uttar Pradesh's non-attainment cities offers policymakers substantial evidence to enhance current efforts. While existing measures are in place, our findings suggest that intensified provisions may be necessary for cities predicted to fall short of meeting program targets. The Prophet model's forecasts can pinpoint these at-risk areas, allowing for targeted interventions and regional adjustments to strategies. This approach will help promote sustainable development customized to each city's specific needs.

Funding

No funding was issued for this research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估国家清洁空气计划对北方邦非达标城市的影响:先知模型时间序列分析
背景北方邦是印度最大的邦,面临着严重的污染问题,需要采取紧急行动。国家清洁空气计划 (NCAP) 的目标是到 2026 年将颗粒物污染减少 40%。本研究使用先知预测模型评估了 NCAP 对北方邦 15 个非达标城市的影响。方法从北方邦污染控制委员会获取了 2016 年至 2023 年空气质量指数和 PM10 浓度的月度数据。采用弗里德曼检验法评估了 2017 年至 2023 年空气质量指数和 PM10 平均水平的显著变化。先知模型预测了 2025-26 年的 PM10 浓度,计算了相对百分比变化,并评估了模型评估指标。詹西在 2023 年的空气质量指数最低(72.73),按照世界卫生组织的标准被归类为 "中度"。戈勒克布尔的空气质量指数一直处于 "较差 "水平,2019 年达到峰值 249.31。北方邦西部的加济阿巴德、诺伊达和莫拉达巴德等城市污染严重。预测显示,巴雷利的 PM10 水平下降了 70%以上,雷巴雷利下降了 58%,莫拉达巴德下降了 55%,加济阿巴德下降了 48%,阿格拉下降了约 41%,瓦拉纳西下降了 40%,达到了国家空气质量行动计划的目标。然而,戈勒克布尔和普拉亚格拉杰预测 PM10 水平将分别增加 50%和 32%。莫拉达巴德的模型表现最佳,R2 为 0.81,MAE 为 17.27 μg/m3,MAPE 为 0.10。虽然现有措施已经到位,但我们的研究结果表明,对于预计无法达到计划目标的城市,可能有必要加强规定。先知模型的预测可以精确定位这些高风险地区,从而进行有针对性的干预和区域战略调整。这种方法将有助于促进可持续发展,满足每个城市的具体需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Trajectories and social determinants of child cognitive development: a prospective cohort study from infancy through middle childhood in Dhaka, Bangladesh Identifying clustering of cholera cases using geospatial analysis in Kolkata and surrounding districts: data from patients at tertiary care referral hospitals Phenotypes of South Asian patients with atrial fibrillation and holistic integrated care management: cluster analysis of data from KERALA-AF Registry Exploring sex toy use among 18–45-year-old Indian adults: insights from a nationwide online survey Small-area variation in child under-vaccination in India: a multilevel analysis of cross-sectional data from 36 states and Union Territories, 707 districts, and 22,349 small-area clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1