{"title":"A micromechanics-based artificial neural networks model for rapid prediction of mechanical response in short fiber reinforced rubber composites","authors":"Shenghao Chen, Qun Li, Yingxuan Dong, Junling Hou","doi":"10.1016/j.ijsolstr.2024.113093","DOIUrl":null,"url":null,"abstract":"<div><div>The complex microstructural characteristics inherent in short fiber reinforced rubber composites (SFRRCs) impose considerable computational burdens in predicting the mechanical behavior of such composite materials. To address this challenge, this research extends the applicability of the homogeneous model predicated on the orientation averaging method to encompass composite materials featuring hyperelastic matrices. Combined with finite element method, a comprehensive mechanical response database encompassing various volume fractions and fiber orientation distributions is established. Leveraging this database, a micromechanics-based artificial neural network (ANN) model is meticulously designed to rapidly predict the mechanical response of SFRRCs across varying volume fractions and fiber orientation distributions, utilizing a fixed strain step strategy. To ascertain the efficacy and precision of the developed ANN model, representative volume elements portraying both planar and three-dimensional random distributions of composites are constructed and subjected to finite element analysis. Results indicate that the predicted outcomes from the ANN model align closely with finite element calculations within a certain strain range, while significantly reducing computational costs.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"305 ","pages":"Article 113093"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768324004529","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The complex microstructural characteristics inherent in short fiber reinforced rubber composites (SFRRCs) impose considerable computational burdens in predicting the mechanical behavior of such composite materials. To address this challenge, this research extends the applicability of the homogeneous model predicated on the orientation averaging method to encompass composite materials featuring hyperelastic matrices. Combined with finite element method, a comprehensive mechanical response database encompassing various volume fractions and fiber orientation distributions is established. Leveraging this database, a micromechanics-based artificial neural network (ANN) model is meticulously designed to rapidly predict the mechanical response of SFRRCs across varying volume fractions and fiber orientation distributions, utilizing a fixed strain step strategy. To ascertain the efficacy and precision of the developed ANN model, representative volume elements portraying both planar and three-dimensional random distributions of composites are constructed and subjected to finite element analysis. Results indicate that the predicted outcomes from the ANN model align closely with finite element calculations within a certain strain range, while significantly reducing computational costs.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.