Ameena Kiran , Tanzila Anjum , Asim Laeeq Khan , Hamad AlMohamadi , Sana Kiran , Mazhar Amjad Gilani , Muhammad Aslam , Mohammad Younas , R. Nawaz , Aqeel Ahmed Bazmi , Muhammad Yasin
{"title":"Enhancing water purification efficiency with zirconium-mercaptosuccinic acid metal-organic framework integrated mixed matrix membranes: Synthesis, comprehensive characterization, and performance insights","authors":"Ameena Kiran , Tanzila Anjum , Asim Laeeq Khan , Hamad AlMohamadi , Sana Kiran , Mazhar Amjad Gilani , Muhammad Aslam , Mohammad Younas , R. Nawaz , Aqeel Ahmed Bazmi , Muhammad Yasin","doi":"10.1016/j.cherd.2024.09.021","DOIUrl":null,"url":null,"abstract":"<div><div>The development of metal-organic framework (MOF) based membranes has shown great potential to address the bottlenecks in industrial wastewater treatment. This study emphasized a novel approach involving a zirconium-based MOF (Zr-MA-MOF) with mercaptosuccinic acid (MA) as a ligand for fabricating mixed matrix membranes (MMMs). These MMMs were fabricated using a polyethersulfone (PES) matrix embedded with different nanofiller loadings of 0.25, 0.5, 0.75, and 1.0 wt%. Consequently, this study investigated the impact of Zr-MA-MOF loadings on the membrane morphology and functional performance, particularly focusing on pure water flux, rejection of salts, heavy metals, and dyes, antifouling properties, and long-term stability. The MMM with a loading of 0.75 wt% Zr-MA-MOF emerged as a standout performer, delivering an exceptional water flux of 71 Lm<sup>−2</sup>h<sup>−1</sup> and rejection efficiencies of 80, 74, and 99 % for divalent magnesium sulfate (MgSO<sub>4</sub>), monovalent sodium chloride (NaCl), and dyes (including methylene blue, congo red, and rose bengal), respectively. The heavy metal rejection capabilities of the Zr-MA-MOF membrane were equally remarkable, with rejection rates of 90, 92, and 94 % for arsenic, chromium, and aluminum ions, respectively. Furthermore, a flux recovery ratio of 92 % showcased the great potential for sustainable industrial applications. These findings revealed that the integration of Zr-MA-MOF into membrane technology holds great potential for water treatment processes, catering to both human consumption and industrial applications for diverse wastewater treatment needs.</div></div>","PeriodicalId":10019,"journal":{"name":"Chemical Engineering Research & Design","volume":"211 ","pages":"Pages 9-20"},"PeriodicalIF":3.7000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Research & Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263876224005549","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of metal-organic framework (MOF) based membranes has shown great potential to address the bottlenecks in industrial wastewater treatment. This study emphasized a novel approach involving a zirconium-based MOF (Zr-MA-MOF) with mercaptosuccinic acid (MA) as a ligand for fabricating mixed matrix membranes (MMMs). These MMMs were fabricated using a polyethersulfone (PES) matrix embedded with different nanofiller loadings of 0.25, 0.5, 0.75, and 1.0 wt%. Consequently, this study investigated the impact of Zr-MA-MOF loadings on the membrane morphology and functional performance, particularly focusing on pure water flux, rejection of salts, heavy metals, and dyes, antifouling properties, and long-term stability. The MMM with a loading of 0.75 wt% Zr-MA-MOF emerged as a standout performer, delivering an exceptional water flux of 71 Lm−2h−1 and rejection efficiencies of 80, 74, and 99 % for divalent magnesium sulfate (MgSO4), monovalent sodium chloride (NaCl), and dyes (including methylene blue, congo red, and rose bengal), respectively. The heavy metal rejection capabilities of the Zr-MA-MOF membrane were equally remarkable, with rejection rates of 90, 92, and 94 % for arsenic, chromium, and aluminum ions, respectively. Furthermore, a flux recovery ratio of 92 % showcased the great potential for sustainable industrial applications. These findings revealed that the integration of Zr-MA-MOF into membrane technology holds great potential for water treatment processes, catering to both human consumption and industrial applications for diverse wastewater treatment needs.
期刊介绍:
ChERD aims to be the principal international journal for publication of high quality, original papers in chemical engineering.
Papers showing how research results can be used in chemical engineering design, and accounts of experimental or theoretical research work bringing new perspectives to established principles, highlighting unsolved problems or indicating directions for future research, are particularly welcome. Contributions that deal with new developments in plant or processes and that can be given quantitative expression are encouraged. The journal is especially interested in papers that extend the boundaries of traditional chemical engineering.