Marcelle Teodoro Lima, Samir Leite Mathias, Manuel Enrique Gamero Guandique, Aparecido Junior de Menezes, John Toland Van Stan II, Kelly Cristina Tonello
{"title":"Exploring Bark-Water Interaction Effects on Stemflow Nutrient Concentrations in Urban Trees","authors":"Marcelle Teodoro Lima, Samir Leite Mathias, Manuel Enrique Gamero Guandique, Aparecido Junior de Menezes, John Toland Van Stan II, Kelly Cristina Tonello","doi":"10.1002/hyp.15294","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study investigates the influence of bark properties on nutrient fluxes in urban environments, focusing on the relationship between bark wettability, chemical composition, and the concentrations of nutrients in stemflow and adjacent soil across eight urban tree species. Through a comprehensive analysis involving chemical assays and ecohydrological measurements, we explored how variations in bark characteristics affect water interaction and subsequent chemical dynamics within urban landscapes. Contrary to the initial hypothesis that bark properties would significantly influence nutrient flux, results revealed a complex scenario where environmental and anthropogenic factors in urban settings seemingly overshadow the direct impact of bark characteristics on nutrient dynamics. Our findings indicate that while bark properties such as wettability and chemical composition do vary among tree species, these variations do not directly correlate with significant differences in stemflow or soil nutrient concentrations. This suggests a homogenising effect of urban environments on ecohydrological processes, highlighting the need for a broader understanding of urban forest ecology that incorporates both biological traits and urban-specific environmental influences. This research contributes to the field of urban ecohydrology by underscoring the complexity of nutrient fluxes in urban forests and suggesting that effective urban tree management requires an integrated approach that considers the interplay between tree physiological traits and urban environmental conditions. Our study calls for further research to unravel the intricate dynamics of urban ecosystems, aiming to enhance the sustainability and ecological benefits of urban forests.</p>\n </div>","PeriodicalId":13189,"journal":{"name":"Hydrological Processes","volume":"38 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Processes","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hyp.15294","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the influence of bark properties on nutrient fluxes in urban environments, focusing on the relationship between bark wettability, chemical composition, and the concentrations of nutrients in stemflow and adjacent soil across eight urban tree species. Through a comprehensive analysis involving chemical assays and ecohydrological measurements, we explored how variations in bark characteristics affect water interaction and subsequent chemical dynamics within urban landscapes. Contrary to the initial hypothesis that bark properties would significantly influence nutrient flux, results revealed a complex scenario where environmental and anthropogenic factors in urban settings seemingly overshadow the direct impact of bark characteristics on nutrient dynamics. Our findings indicate that while bark properties such as wettability and chemical composition do vary among tree species, these variations do not directly correlate with significant differences in stemflow or soil nutrient concentrations. This suggests a homogenising effect of urban environments on ecohydrological processes, highlighting the need for a broader understanding of urban forest ecology that incorporates both biological traits and urban-specific environmental influences. This research contributes to the field of urban ecohydrology by underscoring the complexity of nutrient fluxes in urban forests and suggesting that effective urban tree management requires an integrated approach that considers the interplay between tree physiological traits and urban environmental conditions. Our study calls for further research to unravel the intricate dynamics of urban ecosystems, aiming to enhance the sustainability and ecological benefits of urban forests.
期刊介绍:
Hydrological Processes is an international journal that publishes original scientific papers advancing understanding of the mechanisms underlying the movement and storage of water in the environment, and the interaction of water with geological, biogeochemical, atmospheric and ecological systems. Not all papers related to water resources are appropriate for submission to this journal; rather we seek papers that clearly articulate the role(s) of hydrological processes.