Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties

IF 2.3 Food Bioengineering Pub Date : 2024-09-10 DOI:10.1002/fbe2.12099
Qian You, Runxiang Mao, Yukun Yuan, Ling Zhang, Xingguo Tian, Xiaoyan Xu
{"title":"Effect of sodium bicarbonate with ultrasound on reduced-salt Chaozhou beef meatballs quality: Physicochemical and sensory properties","authors":"Qian You,&nbsp;Runxiang Mao,&nbsp;Yukun Yuan,&nbsp;Ling Zhang,&nbsp;Xingguo Tian,&nbsp;Xiaoyan Xu","doi":"10.1002/fbe2.12099","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to create a reduced-salt version of Chaozhou beef meatballs (CBMs) by employing ultrasound treatment (0 and 30 min) combined with sodium bicarbonate (0%, 0.15%, and 0.3%). The ultrasound-assisted sodium bicarbonate treatment significantly enhanced pH, salt-soluble protein solubility (SSP), water-holding capacity (WHC), and storage modulus (<i>G</i>′) of the CBMs (<i>p</i> &lt; 0.05). Specifically, after treatment, the increase in pH value promoted the solubilization of SSP, with the content increasing from 28.23% to 56.53%. Moreover, the initial relaxation times (<i>T</i><sub>21</sub> and <i>T</i><sub>22</sub>) were shortened, indicating a decrease in water mobility, as evidenced by an increase in WHC from 85% to 87%. Furthermore, the ultrasound treatment effectively facilitated protein unfolding, increased β-sheet secondary structure content, augmented hydrogen and disulfide bond proportions, and resulted in a denser and more uniform gel structure. Consequently, the hardness of the CBMs was significantly improved (<i>p</i> &lt; 0.05). Sensory evaluation revealed that the treated reduced-salt CBMs were comparable to those produced by conventional methods. Therefore, combining sodium bicarbonate with ultrasound treatment is a viable approach to mitigate the negative effects of reduced salt content and produce high-quality reduced-salt CBMs.</p>","PeriodicalId":100544,"journal":{"name":"Food Bioengineering","volume":"3 3","pages":"301-313"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fbe2.12099","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fbe2.12099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to create a reduced-salt version of Chaozhou beef meatballs (CBMs) by employing ultrasound treatment (0 and 30 min) combined with sodium bicarbonate (0%, 0.15%, and 0.3%). The ultrasound-assisted sodium bicarbonate treatment significantly enhanced pH, salt-soluble protein solubility (SSP), water-holding capacity (WHC), and storage modulus (G′) of the CBMs (p < 0.05). Specifically, after treatment, the increase in pH value promoted the solubilization of SSP, with the content increasing from 28.23% to 56.53%. Moreover, the initial relaxation times (T21 and T22) were shortened, indicating a decrease in water mobility, as evidenced by an increase in WHC from 85% to 87%. Furthermore, the ultrasound treatment effectively facilitated protein unfolding, increased β-sheet secondary structure content, augmented hydrogen and disulfide bond proportions, and resulted in a denser and more uniform gel structure. Consequently, the hardness of the CBMs was significantly improved (p < 0.05). Sensory evaluation revealed that the treated reduced-salt CBMs were comparable to those produced by conventional methods. Therefore, combining sodium bicarbonate with ultrasound treatment is a viable approach to mitigate the negative effects of reduced salt content and produce high-quality reduced-salt CBMs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声波碳酸氢钠对减盐潮州牛肉丸品质的影响理化和感官特性
本研究旨在通过超声波处理(0 分钟和 30 分钟)结合碳酸氢钠(0%、0.15% 和 0.3%)来制作减盐型潮州牛肉丸(CBMs)。超声辅助碳酸氢钠处理显著提高了牛肉丸的 pH 值、盐溶蛋白溶解度(SSP)、持水量(WHC)和储藏模量(G′)(p < 0.05)。具体来说,处理后,pH 值的增加促进了 SSP 的增溶,其含量从 28.23% 增加到 56.53%。此外,初始弛豫时间(T21 和 T22)缩短,表明水的流动性降低,WHC 从 85% 提高到 87% 就是证明。此外,超声处理还有效地促进了蛋白质的解折,增加了β片层二级结构的含量,提高了氢键和二硫键的比例,并使凝胶结构更致密、更均匀。因此,煤层气的硬度明显提高(p < 0.05)。感官评估显示,经过处理的减盐煤层气与传统方法生产的煤层气相当。因此,将碳酸氢钠与超声波处理相结合是一种可行的方法,可减轻盐含量降低的负面影响,并生产出高质量的减盐煤层气。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Development of a Triticale-Based Amylolytic Biocatalyst for Starch Hydrolysis With Applications in Brewing Wort Sugar Enhancement Transcriptomics and Untargeted Metabolomics Analyses Provide New Insights Into the Immunomodulatory Activity of Arecanut Polysaccharide Management and Modification of Flavonoids Against Nonalcoholic Fatty Liver Disease Gut-Targeted Nutraceutical Delivery: Engineering Microbiome-Responsive Nutraceutical Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1