Supercooled Water Cloud Detection From Polarized Multi-Angle Imager Data Using 1.37 μm Water Vapor Polarized Channel

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-10-11 DOI:10.1029/2024JD041118
Haofei Wang, Na Xu, Bertrand Fougnie, Peng Zhang, Bojan Bojkov, Songyan Gu, Jian Shang, Lin Chen, Xiuqing Hu, Zhengqiang Li
{"title":"Supercooled Water Cloud Detection From Polarized Multi-Angle Imager Data Using 1.37 μm Water Vapor Polarized Channel","authors":"Haofei Wang,&nbsp;Na Xu,&nbsp;Bertrand Fougnie,&nbsp;Peng Zhang,&nbsp;Bojan Bojkov,&nbsp;Songyan Gu,&nbsp;Jian Shang,&nbsp;Lin Chen,&nbsp;Xiuqing Hu,&nbsp;Zhengqiang Li","doi":"10.1029/2024JD041118","DOIUrl":null,"url":null,"abstract":"<p>Detecting supercooled water clouds (SWCs) is essential for enhancing artificial rainfall, preventing aircraft ice accretion, and developing a better understanding of radiative energy balance. The 1.37 μm channel, known as strong water vapor absorbing, was made polarized in the polarized multi-angle imager (PMAI) onboard FengYun-3G satellite. The infight data shown that the new 1.37 μm polarized channel could be used to detect SWCs. The cloudbow is observed around the 140° scattering angle in the 1.37 μm polarization image, with a maximum polarization reflectance of approximately 0.04–0.06. The indicated water clouds with spherical particles in the high-level altitude could be SWCs. Then, the SWCs detected by 1.37 μm polarized channel is verified using polarized reflectance of other channels, the reflectance difference of channels, and thermal infrared bright temperature. The presence of cloudbow in 1.03 and 1.64 μm channels indicate liquid water cloud. The reflectance difference between 1.03 and 1.64 μm of SWCs agree with characteristic of water cloud. The thermal infrared channels from the imager on the same platform indicate cold cloud with the brightness temperature far below 273.16 K. Therefore, the only use of 1.37 μm polarized channel could perform the identification of SWCs. PMAI provides a powerful tool for monitoring supercooled water clouds.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"129 20","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD041118","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting supercooled water clouds (SWCs) is essential for enhancing artificial rainfall, preventing aircraft ice accretion, and developing a better understanding of radiative energy balance. The 1.37 μm channel, known as strong water vapor absorbing, was made polarized in the polarized multi-angle imager (PMAI) onboard FengYun-3G satellite. The infight data shown that the new 1.37 μm polarized channel could be used to detect SWCs. The cloudbow is observed around the 140° scattering angle in the 1.37 μm polarization image, with a maximum polarization reflectance of approximately 0.04–0.06. The indicated water clouds with spherical particles in the high-level altitude could be SWCs. Then, the SWCs detected by 1.37 μm polarized channel is verified using polarized reflectance of other channels, the reflectance difference of channels, and thermal infrared bright temperature. The presence of cloudbow in 1.03 and 1.64 μm channels indicate liquid water cloud. The reflectance difference between 1.03 and 1.64 μm of SWCs agree with characteristic of water cloud. The thermal infrared channels from the imager on the same platform indicate cold cloud with the brightness temperature far below 273.16 K. Therefore, the only use of 1.37 μm polarized channel could perform the identification of SWCs. PMAI provides a powerful tool for monitoring supercooled water clouds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 1.37 μm 水汽偏振通道从偏振多角度成像仪数据中探测过冷水云
探测过冷水云(SWCs)对于增强人工降雨、防止飞机积冰以及更好地了解辐射能量平衡至关重要。风云三号 G 卫星搭载的偏振多角度成像仪(PMAI)对 1.37 μm 波道进行了偏振处理,该波道被称为强水汽吸收波道。这次飞行的数据表明,新的 1.37 μm 偏振信道可用于探测 SWCs。在 1.37 μm 偏振图像中,140°散射角附近观测到云弓,最大偏振反射率约为 0.04-0.06。在高空观测到的带有球形颗粒的水云可能就是 SWC。然后,利用其他信道的偏振反射率、信道反射率差和热红外亮温对 1.37 μm 偏振信道探测到的 SWC 进行验证。1.03 和 1.64 μm 信道中云弓的存在表明存在液态水云。水云母 1.03 和 1.64 μm 之间的反射率差符合水云的特征。因此,仅使用 1.37 μm 偏振信道就可以识别水云。PMAI 为监测过冷水云提供了强有力的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Analysis of the Influence of Clear-Sky Fluxes on the Cloud-Type Mean Cloud Radiative Effects in the Tropical Convectively Active Regions With CERES Satellite Data A Simple Model for the Evaporation of Hydrometeors and Their Isotopes Modeling the Effects of Vegetation and Snow on Dust Storm Over the Gobi Desert Origins of Extreme CAPE Around the World A More Transparent Infrared Window
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1