{"title":"Substrate Competition of Diazotrophic Nitrous Oxide Assimilation Over Dinitrogen Fixation","authors":"Guangbo Li, Haizheng Hong, Wenfang Lin, Qixing Ji","doi":"10.1029/2024JG008187","DOIUrl":null,"url":null,"abstract":"<p>Nitrous oxide (N<sub>2</sub>O) is a potent greenhouse gas and is depleting the stratospheric ozone layer. Diazotrophic N<sub>2</sub>O assimilation to biomass represents a novel biological N<sub>2</sub>O consumption pathway in addition to canonical denitrification. Thermodynamically, N<sub>2</sub>O assimilation is more favorable than dinitrogen (N<sub>2</sub>) fixation in natural environments, especially under higher N<sub>2</sub>O concentration and cooler conditions. Via isotopic tracing experiments, N<sub>2</sub>O assimilation was detected on cultured diazotrophs <i>Crocosphaera</i> and <i>Trichodesmium</i> with specific rates from 1.27 ± 0.16 × 10<sup>−4</sup> to 2.00 ± 0.25 × 10<sup>−4</sup> hr<sup>−1</sup> under elevated [N<sub>2</sub>O]/[N<sub>2</sub>] conditions (0.0005–0.01) within 24-hr incubation. The rates of N<sub>2</sub>O assimilation during the light and dark periods were statistically insignificant compared with N<sub>2</sub> fixation activity. In a eutrophic estuary, N<sub>2</sub>O assimilation was not detected in the absence of diazotrophic activity. A competitive substrate kinetic model with experimentally calibrated parameters successfully quantified rate ratios of N<sub>2</sub>O assimilation and N<sub>2</sub> fixation in varying substrate concentrations. The low [N<sub>2</sub>O]/[N<sub>2</sub>] ratio in natural conditions leads to N<sub>2</sub>O assimilation rate being <0.1% of N<sub>2</sub> fixation rate, rendering negligible impact of N<sub>2</sub>O assimilation. The model was also used to predict the time required for experimental detection of N<sub>2</sub>O assimilation in isotopic tracing experiments under varying [N<sub>2</sub>O]/[N<sub>2</sub>] ratios. This study enhances the mechanistic understanding of N<sub>2</sub>O assimilation by diazotrophs, broadening the microbial nitrogen cycle by a potential N<sub>2</sub>O sink and nitrogen source for production.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"129 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008187","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008187","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and is depleting the stratospheric ozone layer. Diazotrophic N2O assimilation to biomass represents a novel biological N2O consumption pathway in addition to canonical denitrification. Thermodynamically, N2O assimilation is more favorable than dinitrogen (N2) fixation in natural environments, especially under higher N2O concentration and cooler conditions. Via isotopic tracing experiments, N2O assimilation was detected on cultured diazotrophs Crocosphaera and Trichodesmium with specific rates from 1.27 ± 0.16 × 10−4 to 2.00 ± 0.25 × 10−4 hr−1 under elevated [N2O]/[N2] conditions (0.0005–0.01) within 24-hr incubation. The rates of N2O assimilation during the light and dark periods were statistically insignificant compared with N2 fixation activity. In a eutrophic estuary, N2O assimilation was not detected in the absence of diazotrophic activity. A competitive substrate kinetic model with experimentally calibrated parameters successfully quantified rate ratios of N2O assimilation and N2 fixation in varying substrate concentrations. The low [N2O]/[N2] ratio in natural conditions leads to N2O assimilation rate being <0.1% of N2 fixation rate, rendering negligible impact of N2O assimilation. The model was also used to predict the time required for experimental detection of N2O assimilation in isotopic tracing experiments under varying [N2O]/[N2] ratios. This study enhances the mechanistic understanding of N2O assimilation by diazotrophs, broadening the microbial nitrogen cycle by a potential N2O sink and nitrogen source for production.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology