{"title":"Nitrogen Cycling Through Secondary Succession in a Northwestern Virginia Chronosequence","authors":"A. M. Parisien, H. E. Epstein","doi":"10.1029/2024JG008584","DOIUrl":null,"url":null,"abstract":"<p>Forest clearing for agricultural use followed by cropland or pasture abandonment is a leading cause of forest disturbance. While theoretical models broadly predict the biogeochemical and structural dynamics of secondary forest succession following disturbances, much remains unknown regarding how specific components of biogeochemical cycling vary through secondary succession. Here we investigate two post-agricultural disturbance chronosequences at Blandy Experimental Farm in Boyce, VA, each consisting of an early, mid, and late successional field (∼20, ∼35, and ∼100 years old, respectively). We collected data observing a wide range of ecosystem N pools, transformations, and fluxes, including soil, litter, and foliar N; net N mineralization and nitrification; soil N leaching potential; and soil and foliar <sup>15</sup>N natural abundance. We found that total soil N increased throughout secondary succession; while litter N concentration decreased in late succession, total litter mass increased, so total litter N increased as well. Foliar N concentration increased from early to late succession, among and within species. While soil ammonium concentration decreased through succession, soil nitrate concentration increased. Net N mineralization and nitrification both increased throughout succession, and a greater proportion of mineralized N was nitrified later in succession. Isotopic analysis suggested high N-fixation in mid-succession, and these observations taken together indicated high N availability and a relatively open N cycle later in succession in this system. Comprehensive field observations such as these are essential for honing a mechanistic understanding of successional systems and making predictions about the biogeochemical cycling and ecosystem function of current and future successional forests.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008584","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008584","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Forest clearing for agricultural use followed by cropland or pasture abandonment is a leading cause of forest disturbance. While theoretical models broadly predict the biogeochemical and structural dynamics of secondary forest succession following disturbances, much remains unknown regarding how specific components of biogeochemical cycling vary through secondary succession. Here we investigate two post-agricultural disturbance chronosequences at Blandy Experimental Farm in Boyce, VA, each consisting of an early, mid, and late successional field (∼20, ∼35, and ∼100 years old, respectively). We collected data observing a wide range of ecosystem N pools, transformations, and fluxes, including soil, litter, and foliar N; net N mineralization and nitrification; soil N leaching potential; and soil and foliar 15N natural abundance. We found that total soil N increased throughout secondary succession; while litter N concentration decreased in late succession, total litter mass increased, so total litter N increased as well. Foliar N concentration increased from early to late succession, among and within species. While soil ammonium concentration decreased through succession, soil nitrate concentration increased. Net N mineralization and nitrification both increased throughout succession, and a greater proportion of mineralized N was nitrified later in succession. Isotopic analysis suggested high N-fixation in mid-succession, and these observations taken together indicated high N availability and a relatively open N cycle later in succession in this system. Comprehensive field observations such as these are essential for honing a mechanistic understanding of successional systems and making predictions about the biogeochemical cycling and ecosystem function of current and future successional forests.
期刊介绍:
JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology