PA-RDFKNet: Unifying Plant Age Estimation through RGB-Depth Fusion and Knowledge Distillation

Shreya Bansal;Malya Singh;Seema Barda;Neeraj Goel;Mukesh Saini
{"title":"PA-RDFKNet: Unifying Plant Age Estimation through RGB-Depth Fusion and Knowledge Distillation","authors":"Shreya Bansal;Malya Singh;Seema Barda;Neeraj Goel;Mukesh Saini","doi":"10.1109/TAFE.2024.3418818","DOIUrl":null,"url":null,"abstract":"Agriculture is facing bigger challenges in the 21st century due to the scarcity of resources. Artificial intelligence is being integrated with agriculture to cater to people's needs, unlocking fresh avenues for sustainability and innovation. One of the crucial agricultural practices is plant growth monitoring to detect plant stress at an early stage. In the past, there have been preliminary attempts at plant growth monitoring using red–green–blue (RGB) and depth images. The major challenge of this approach is the unavailability of the depth camera at the farmers' end. In this work, we have developed a transformer-based plant age RGB-depth fusion knowledge distillation network (PA-RDFKNet), a multi-to-single modal teacher–student network, that exploits the combined knowledge of RGB-depth pairs at the training time to infer the growth using RGB images alone during test time. The model uses a distillation loss that combines response-based, feature-based, and relation-based knowledge distillation techniques in the offline scheme. The proposed knowledge distillation improves the mean squared error for RGB images from 2 to 0.14 weeks. The results are validated on three different datasets.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"226-235"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10584073/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture is facing bigger challenges in the 21st century due to the scarcity of resources. Artificial intelligence is being integrated with agriculture to cater to people's needs, unlocking fresh avenues for sustainability and innovation. One of the crucial agricultural practices is plant growth monitoring to detect plant stress at an early stage. In the past, there have been preliminary attempts at plant growth monitoring using red–green–blue (RGB) and depth images. The major challenge of this approach is the unavailability of the depth camera at the farmers' end. In this work, we have developed a transformer-based plant age RGB-depth fusion knowledge distillation network (PA-RDFKNet), a multi-to-single modal teacher–student network, that exploits the combined knowledge of RGB-depth pairs at the training time to infer the growth using RGB images alone during test time. The model uses a distillation loss that combines response-based, feature-based, and relation-based knowledge distillation techniques in the offline scheme. The proposed knowledge distillation improves the mean squared error for RGB images from 2 to 0.14 weeks. The results are validated on three different datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PA-RDFKNet:通过 RGB 深度融合和知识提炼统一植物年龄估计
由于资源匮乏,农业在 21 世纪面临着更大的挑战。人工智能正在与农业相结合,以满足人们的需求,为可持续发展和创新开辟新的途径。其中一项重要的农业实践是植物生长监测,以便及早发现植物的压力。过去,人们曾初步尝试使用红-绿-蓝(RGB)和深度图像进行植物生长监测。这种方法面临的主要挑战是农民无法使用深度摄像头。在这项工作中,我们开发了一个基于变压器的植物年龄 RGB 深度融合知识蒸馏网络(PA-RDFKNet),这是一个多模态到单模态的师生网络,在训练时利用 RGB 深度对的综合知识,在测试时仅使用 RGB 图像推断生长情况。该模型在离线方案中使用了一种结合了基于响应、基于特征和基于关系的知识蒸馏技术的蒸馏损失。所提出的知识蒸馏可将 RGB 图像的均方误差从 2 周减少到 0.14 周。结果在三个不同的数据集上得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1