A Wireless Biosensor Node for In Vivo and Real-Time Plant Monitoring in Precision Agriculture

Michele Caselli;Edoardo Graiani;Valentina Bianchi;Filippo Vurro;Manuele Bettelli;Giuseppe Tarabella;Ilaria De Munari;Michela Janni;Andrea Boni
{"title":"A Wireless Biosensor Node for In Vivo and Real-Time Plant Monitoring in Precision Agriculture","authors":"Michele Caselli;Edoardo Graiani;Valentina Bianchi;Filippo Vurro;Manuele Bettelli;Giuseppe Tarabella;Ilaria De Munari;Michela Janni;Andrea Boni","doi":"10.1109/TAFE.2024.3386938","DOIUrl":null,"url":null,"abstract":"This article presents a wireless biosensor based on an organic electrochemical transistor, a low-power electronic system, with narrow band (NB)-Internet of Things (IoT)/Cat-M1 radio interface, and server with web interface. The biosensor, implanted in the plant stem, allows the in vivo evaluation of the concentration of nutrients dissolved as cations in the sap. The electronic circuit enables the real-time monitoring of the plant in the crop. The NB-IoT or Cat-M1 link, both available in the system-in-package device selected for the proposed system, ensures almost ubiquitous availability of the network link, without severe limitations on the data payload. The server stores in cloud the data obtained from the field, and a web interface enables the remote monitoring of the plant physiological mechanisms, with consumer devices, such as laptops or smartphones. The low power consumption of the biosensor allows more than three months of battery lifetime, adequate for most seasonal crops. With duty-cycle approach, more than one year of lifetime can be obtained for perennial crops, such as vineyards and orchards. Measurements on KCl solutions showed adequate sensor linearity up to 10-mM K\n<inline-formula><tex-math>$^+$</tex-math></inline-formula>\n concentration, while those performed on a sap of kiwi vines are in agreement with data available in the literature. In vivo measurements carried out on cabbage show how the parameters of the sensor are affected by the circadian cycle. In day time, a reduction of cation concentration, due to water absorption for the photosynthesis and stomatal transpiration, is detected by the wireless-bioristor.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"268-275"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10517755","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10517755/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a wireless biosensor based on an organic electrochemical transistor, a low-power electronic system, with narrow band (NB)-Internet of Things (IoT)/Cat-M1 radio interface, and server with web interface. The biosensor, implanted in the plant stem, allows the in vivo evaluation of the concentration of nutrients dissolved as cations in the sap. The electronic circuit enables the real-time monitoring of the plant in the crop. The NB-IoT or Cat-M1 link, both available in the system-in-package device selected for the proposed system, ensures almost ubiquitous availability of the network link, without severe limitations on the data payload. The server stores in cloud the data obtained from the field, and a web interface enables the remote monitoring of the plant physiological mechanisms, with consumer devices, such as laptops or smartphones. The low power consumption of the biosensor allows more than three months of battery lifetime, adequate for most seasonal crops. With duty-cycle approach, more than one year of lifetime can be obtained for perennial crops, such as vineyards and orchards. Measurements on KCl solutions showed adequate sensor linearity up to 10-mM K $^+$ concentration, while those performed on a sap of kiwi vines are in agreement with data available in the literature. In vivo measurements carried out on cabbage show how the parameters of the sensor are affected by the circadian cycle. In day time, a reduction of cation concentration, due to water absorption for the photosynthesis and stomatal transpiration, is detected by the wireless-bioristor.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于精准农业中植物体内和实时监测的无线生物传感器节点
本文介绍了一种基于有机电化学晶体管、低功耗电子系统、窄带(NB)-物联网(IoT)/Cat-M1 无线电接口和带网络接口的服务器的无线生物传感器。该生物传感器植入植物茎部,可对溶解在汁液中的阳离子养分浓度进行活体评估。电子电路可对作物中的植物进行实时监控。NB-IoT 或 Cat-M1 链路(均可在为拟议系统选择的系统级封装设备中使用)可确保网络链路几乎无处不在,而不会对数据有效载荷造成严重限制。服务器在云端存储从现场获得的数据,网络接口可通过笔记本电脑或智能手机等消费设备远程监控植物的生理机制。生物传感器功耗低,电池寿命超过三个月,足以满足大多数季节性作物的需要。采用占空比方法,葡萄园和果园等多年生作物的电池寿命可达一年以上。在氯化钾溶液中进行的测量显示,传感器的线性度足以达到 10 毫摩尔的 K$^+$ 浓度,而在猕猴桃树液中进行的测量与文献中的数据一致。在卷心菜上进行的活体测量显示了传感器的参数如何受到昼夜周期的影响。在白天,由于光合作用和气孔蒸腾作用的吸水作用,阳离子浓度降低,无线生物电阻器能检测到阳离子浓度的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1