A Model for a Dense LoRaWAN Farm-Area Network in the Agribusiness

Alfredo Arnaud;Matías Miguez;María Eugenia Araújo;Ariel Dagnino;Joel Gak;Aarón Jimenz;José Job Flores;Nicolas Calarco;Luis Arturo Soriano
{"title":"A Model for a Dense LoRaWAN Farm-Area Network in the Agribusiness","authors":"Alfredo Arnaud;Matías Miguez;María Eugenia Araújo;Ariel Dagnino;Joel Gak;Aarón Jimenz;José Job Flores;Nicolas Calarco;Luis Arturo Soriano","doi":"10.1109/TAFE.2024.3422843","DOIUrl":null,"url":null,"abstract":"In this work, modeling, simulation, and experimental measurements of a LoRaWAN network aimed at implementing a dense farm-area network (FAN) in the agrifood industry are presented. First, the network is modeled for a farm of the future, with as many sensors as would be useful, for the four main productive chains in Uruguay as a study case: livestock, timber, agriculture, and dairy industries. To this end, a survey of commercial sensors was conducted, a few farms were visited, and managers and partners in agrocompanies were interviewed. A LoRaWAN network with a single gateway was simulated to estimate the efficiency (related to data packets lost), in the case of a 1000 ha cattle field with more than 1500 sensors and some cameras sharing the network. Finally, the network efficiency was measured, using 30–40 LoRa modules @ 915 MHz, transmitting at pseudorandom times to emulate up to thousands of LoRa sensor nodes. The simulated and measured results are very similar, reaching > 92% efficiency in all cases. Sites bigger than 1000 ha on the four main productive chains were also simulated. Additionally, energy consumption and transmission distance measurements of LoRaWAN modules are presented, as well as an overview of the economic aspects related to the deployment of the network to corroborate them fit the requirements of a FAN in the agribusiness.","PeriodicalId":100637,"journal":{"name":"IEEE Transactions on AgriFood Electronics","volume":"2 2","pages":"284-292"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on AgriFood Electronics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10599886/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, modeling, simulation, and experimental measurements of a LoRaWAN network aimed at implementing a dense farm-area network (FAN) in the agrifood industry are presented. First, the network is modeled for a farm of the future, with as many sensors as would be useful, for the four main productive chains in Uruguay as a study case: livestock, timber, agriculture, and dairy industries. To this end, a survey of commercial sensors was conducted, a few farms were visited, and managers and partners in agrocompanies were interviewed. A LoRaWAN network with a single gateway was simulated to estimate the efficiency (related to data packets lost), in the case of a 1000 ha cattle field with more than 1500 sensors and some cameras sharing the network. Finally, the network efficiency was measured, using 30–40 LoRa modules @ 915 MHz, transmitting at pseudorandom times to emulate up to thousands of LoRa sensor nodes. The simulated and measured results are very similar, reaching > 92% efficiency in all cases. Sites bigger than 1000 ha on the four main productive chains were also simulated. Additionally, energy consumption and transmission distance measurements of LoRaWAN modules are presented, as well as an overview of the economic aspects related to the deployment of the network to corroborate them fit the requirements of a FAN in the agribusiness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
农业综合企业密集型 LoRaWAN 农场区域网络模型
在这项工作中,介绍了 LoRaWAN 网络的建模、模拟和实验测量,该网络的目的是在农业食品行业实施密集农场区域网络 (FAN)。首先,以乌拉圭的四个主要生产链(畜牧业、木材业、农业和奶制品业)为研究案例,为未来的农场建立了网络模型,并配备了尽可能多的传感器。为此,我们对商业传感器进行了调查,走访了一些农场,并采访了农业公司的经理和合作伙伴。在一个 1000 公顷的养牛场中,有超过 1500 个传感器和一些摄像头共享网络,我们模拟了一个只有一个网关的 LoRaWAN 网络,以估算其效率(与数据包丢失有关)。最后,使用 30-40 个 LoRa 模块(频率为 915 MHz)测量了网络效率,这些模块以伪随机方式进行传输,模拟了多达数千个 LoRa 传感器节点。模拟和测量结果非常相似,在所有情况下效率都大于 92%。我们还模拟了四个主要生产链上面积超过 1000 公顷的地点。此外,还对 LoRaWAN 模块的能耗和传输距离进行了测量,并概述了与网络部署相关的经济方面,以证实它们符合农业综合企业的 FAN 要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Index IEEE Transactions on AgriFood Electronics Vol. 2 Table of Contents Front Cover IEEE Circuits and Systems Society Information IEEE Circuits and Systems Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1