{"title":"Biocatalysis as a versatile tool for macrolactonization: comparative evaluation of catalytic and stoichiometric approaches†","authors":"Javier Guerrero-Morales and Shawn K. Collins","doi":"10.1039/D4GC04167D","DOIUrl":null,"url":null,"abstract":"<p >Macrolactonization is a challenging process where high dilution and temperatures can extend reaction times and promote reagent degradation. Biocatalysis is a versatile strategy for synthesis but not traditionally associated within the toolbox of organic chemists for macrocyclization. Macrolactonization has been investigated using modern methods employing both catalysis and stoichiometric activation strategies on 20 different substrates with differing ring sizes and types (cyclophanes, macrolactones, macrodiolides) and structural features at the reaction site (central <em>vs</em>. planar chirality; primary <em>vs</em>. secondary alcohols). The data demonstrates that of all protocols examined, the biocatalytic route was superior, providing the highest average yields across all classes of macrocycles studied. From the stoichiometric activation strategies investigated, the Yamaguchi macrolactonization was the most versatile in terms of ring size and nature. Despite the advantages of biocatalytic macrolactonization, advances in developing supported, versatile non-enantioselective lipases would actually represent a useful tool in molecular synthesis.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc04167d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Macrolactonization is a challenging process where high dilution and temperatures can extend reaction times and promote reagent degradation. Biocatalysis is a versatile strategy for synthesis but not traditionally associated within the toolbox of organic chemists for macrocyclization. Macrolactonization has been investigated using modern methods employing both catalysis and stoichiometric activation strategies on 20 different substrates with differing ring sizes and types (cyclophanes, macrolactones, macrodiolides) and structural features at the reaction site (central vs. planar chirality; primary vs. secondary alcohols). The data demonstrates that of all protocols examined, the biocatalytic route was superior, providing the highest average yields across all classes of macrocycles studied. From the stoichiometric activation strategies investigated, the Yamaguchi macrolactonization was the most versatile in terms of ring size and nature. Despite the advantages of biocatalytic macrolactonization, advances in developing supported, versatile non-enantioselective lipases would actually represent a useful tool in molecular synthesis.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.