Deciphering Anomalous Zinc Ions Storage in Intermediate State MnO2 of Layer-to-Tunnel Transition

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Reviews Pub Date : 2024-10-14 DOI:10.1039/d4ee03293d
Xiaohui Li, Dayin He, Qiancheng Zhou, Xing Zhou, Zhouzhou Wang, Chenchen Wei, Yaran Shi, Xiyang Hu, Bangwang Huang, Ze Yang, Xiao Han, Yue Lin, Ying Yu
{"title":"Deciphering Anomalous Zinc Ions Storage in Intermediate State MnO2 of Layer-to-Tunnel Transition","authors":"Xiaohui Li, Dayin He, Qiancheng Zhou, Xing Zhou, Zhouzhou Wang, Chenchen Wei, Yaran Shi, Xiyang Hu, Bangwang Huang, Ze Yang, Xiao Han, Yue Lin, Ying Yu","doi":"10.1039/d4ee03293d","DOIUrl":null,"url":null,"abstract":"MnO2 material has attracted intensive attention as the cathode material of aqueous zinc ion batteries (AZIBs) owing to their outstanding structure diversity, decent capacity and competitive cost. Although various types of MnO2 have been adopted, none of them can completely meet practical demands due to structural collapse during cycling. Herein, an intermediate state MnO2 (IS-MnO2) undergoing a transition from layered to tunnel structures is reported, which exhibits significant improvements in rate and cycle performances compared to pure layered or tunnel MnO2. The systemic structural anatomy reveals the presence of abundant two-phase transition regions within IS-MnO2, which results in distorted lattice and deformed [MnO6] octahedron unit within the two-phase transition region, as well as reduced average valence state of Mn ions. The deformation of [MnO6] reduces the geometric symmetry of ligand field and thereby eliminates the 3d orbital degeneracy of center Mn ion, which effectively avoids Jahn-teller effect of Mn3+ and enhances cycling stability. Additionally, the low-valence Mn leads to the decrease of the electrostatic repulsive during ion insertion/extraction, efficiently improving the rate performance. This work develops a high-performance cathode of AZIBs and also provides new avenues to eliminate the Jahn-teller effect of Mn3+.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"16 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee03293d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MnO2 material has attracted intensive attention as the cathode material of aqueous zinc ion batteries (AZIBs) owing to their outstanding structure diversity, decent capacity and competitive cost. Although various types of MnO2 have been adopted, none of them can completely meet practical demands due to structural collapse during cycling. Herein, an intermediate state MnO2 (IS-MnO2) undergoing a transition from layered to tunnel structures is reported, which exhibits significant improvements in rate and cycle performances compared to pure layered or tunnel MnO2. The systemic structural anatomy reveals the presence of abundant two-phase transition regions within IS-MnO2, which results in distorted lattice and deformed [MnO6] octahedron unit within the two-phase transition region, as well as reduced average valence state of Mn ions. The deformation of [MnO6] reduces the geometric symmetry of ligand field and thereby eliminates the 3d orbital degeneracy of center Mn ion, which effectively avoids Jahn-teller effect of Mn3+ and enhances cycling stability. Additionally, the low-valence Mn leads to the decrease of the electrostatic repulsive during ion insertion/extraction, efficiently improving the rate performance. This work develops a high-performance cathode of AZIBs and also provides new avenues to eliminate the Jahn-teller effect of Mn3+.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密层到隧道转变中间态二氧化锰中的异常锌离子存储
二氧化锰材料作为锌离子水电池(AZIBs)的正极材料,因其出色的结构多样性、良好的容量和具有竞争力的成本而受到广泛关注。虽然人们已经采用了各种类型的二氧化锰,但由于在循环过程中会出现结构坍塌,因此它们都不能完全满足实际需求。本文报告了一种从层状结构过渡到隧道结构的中间态二氧化锰(IS-MnO2),与纯层状或隧道结构二氧化锰相比,它在速率和循环性能方面都有显著改善。系统的结构解剖显示,IS-MnO2 中存在大量的两相过渡区,这导致两相过渡区内的晶格扭曲和[MnO6] 八面体单元变形,以及锰离子的平均价态降低。MnO6]的变形降低了配体场的几何对称性,从而消除了中心锰离子的 3d 轨道退化,有效避免了 Mn3+ 的 Jahn-teller 效应,提高了循环稳定性。此外,低价锰还能降低离子插入/抽出过程中的静电排斥,从而有效提高速率性能。这项研究开发了一种高性能的 AZIB 阴极,同时也为消除 Mn3+ 的 Jahn-teller 效应提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
期刊最新文献
The Analysis of Electron Densities: From Basics to Emergent Applications Asymmetric Orbital Hybridization at MXene-VO2-x Interface Stabilizes Oxygen Vacancies for Enhanced Reversibility in Aqueous Zinc-ion Battery Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1