Homogenized contact in all-perovskite tandems using tailored 2D perovskite

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Pub Date : 2024-10-14 DOI:10.1038/s41586-024-08158-6
Yurui Wang, Renxing Lin, Chenshuaiyu Liu, Xiaoyu Wang, Cullen Chosy, Yuki Haruta, Anh Dinh Bui, Minghui Li, Hongfei Sun, Xuntian Zheng, Haowen Luo, Pu Wu, Han Gao, Wenjie Sun, Yuefeng Nie, Hesheng Zhu, Kun Zhou, Hieu T. Nguyen, Xin Luo, Ludong Li, Chuanxiao Xiao, Makhsud I. Saidaminov, Samuel D. Stranks, Lijun Zhang, Hairen Tan
{"title":"Homogenized contact in all-perovskite tandems using tailored 2D perovskite","authors":"Yurui Wang, Renxing Lin, Chenshuaiyu Liu, Xiaoyu Wang, Cullen Chosy, Yuki Haruta, Anh Dinh Bui, Minghui Li, Hongfei Sun, Xuntian Zheng, Haowen Luo, Pu Wu, Han Gao, Wenjie Sun, Yuefeng Nie, Hesheng Zhu, Kun Zhou, Hieu T. Nguyen, Xin Luo, Ludong Li, Chuanxiao Xiao, Makhsud I. Saidaminov, Samuel D. Stranks, Lijun Zhang, Hairen Tan","doi":"10.1038/s41586-024-08158-6","DOIUrl":null,"url":null,"abstract":"<p>The fabrication of scalable all-perovskite tandem solar cells is considered an attractive route to commercialize perovskite photovoltaic modules<sup>1</sup>. However, The certified efficiency of 1-cm<sup>2</sup> scale all-perovskite tandem solar cells lags behind their small-area (~0.1 cm<sup>2</sup>) counterparts<sup>2,3</sup>. This performance deficit originates from inhomogeneity in wide-bandgap (WBG) perovskite solar cells (PSCs) at a large scale. The inhomogeneity is known to be introduced at the bottom interface and within the perovskite bulk itself<sup>4,5</sup>. Here we uncover another crucial source for the inhomogeneity – the top interface formed during the deposition of the electron transport layer (ETL, C<sub>60</sub>). Meanwhile, the poor ETL interface is also a significant limitation of device performance. We address this issue by introducing a mixture of 4-fluorophenethylamine (F-PEA) and 4-trifluoromethyl-phenylammonium (CF3-PA) to create a tailored two-dimensional perovskite layer (TTDL), in which F-PEA forms a two-dimensional perovskite at the surface reducing contact losses and inhomogeneity, CF3-PA enhances charge extraction and transport. As a result, we demonstrate a high open-circuit voltage of 1.35 V and an efficiency of 20.5% in 1.77-eV WBG PSCs at a square centimeter scale. By stacking with a narrow-bandgap perovskite sub-cell, we report 1.05 cm<sup>2</sup> all-perovskite tandem cells delivering 28.5% (certified 28.2%) efficiency, the highest among all reported so far. Our work showcases the importance of treating the top perovskite/ETL contact for upscaling perovskite solar cells.</p>","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41586-024-08158-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of scalable all-perovskite tandem solar cells is considered an attractive route to commercialize perovskite photovoltaic modules1. However, The certified efficiency of 1-cm2 scale all-perovskite tandem solar cells lags behind their small-area (~0.1 cm2) counterparts2,3. This performance deficit originates from inhomogeneity in wide-bandgap (WBG) perovskite solar cells (PSCs) at a large scale. The inhomogeneity is known to be introduced at the bottom interface and within the perovskite bulk itself4,5. Here we uncover another crucial source for the inhomogeneity – the top interface formed during the deposition of the electron transport layer (ETL, C60). Meanwhile, the poor ETL interface is also a significant limitation of device performance. We address this issue by introducing a mixture of 4-fluorophenethylamine (F-PEA) and 4-trifluoromethyl-phenylammonium (CF3-PA) to create a tailored two-dimensional perovskite layer (TTDL), in which F-PEA forms a two-dimensional perovskite at the surface reducing contact losses and inhomogeneity, CF3-PA enhances charge extraction and transport. As a result, we demonstrate a high open-circuit voltage of 1.35 V and an efficiency of 20.5% in 1.77-eV WBG PSCs at a square centimeter scale. By stacking with a narrow-bandgap perovskite sub-cell, we report 1.05 cm2 all-perovskite tandem cells delivering 28.5% (certified 28.2%) efficiency, the highest among all reported so far. Our work showcases the importance of treating the top perovskite/ETL contact for upscaling perovskite solar cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用定制的二维包晶实现全包晶串联的均质接触
制造可扩展的全过氧化物串联太阳能电池被认为是实现过氧化物光伏组件商业化的一条极具吸引力的途径1。然而,1 平方厘米规模的全过氧化物串联太阳能电池的认证效率落后于小面积(约 0.1 平方厘米)的同类产品2,3。这种性能缺陷源于大规模宽带隙(WBG)过氧化物太阳能电池(PSCs)的不均匀性。众所周知,这种不均匀性是由底部界面和包晶体本身4,5 引起的。在这里,我们发现了不均匀性的另一个关键来源--电子传输层(ETL,C60)沉积过程中形成的顶部界面。同时,较差的 ETL 界面也是器件性能的一个重要限制因素。为了解决这个问题,我们引入了 4-氟苯乙胺(F-PEA)和 4-三氟甲基苯基铵(CF3-PA)的混合物,以创建一个定制的二维过氧化物层(TTDL),其中 F-PEA 在表面形成二维过氧化物,减少了接触损失和不均匀性,CF3-PA 增强了电荷提取和传输。因此,我们在 1.77-eV WBG PSCs 中展示了 1.35V 的高开路电压和 20.5% 的效率,其尺寸为一平方厘米。通过与窄带隙包晶子电池堆叠,我们报告了 1.05 平方厘米全包晶串联电池,其效率达到 28.5%(认证为 28.2%),是迄今为止报告的所有电池中效率最高的。我们的工作展示了处理顶部包晶石/ETL 接触对于提升包晶石太阳能电池的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
期刊最新文献
The speed of smell is faster than expected The huge protein database that spawned AlphaFold and biology’s AI revolution China builds record-breaking magnet — but it comes with a cost How I created a film festival to explore climate communication How does the brain react to birth control? A researcher scanned herself 75 times to find out
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1