Development of surface-activated La0.6Ca0.4MnO3 perovskite-type electrodes using oxygen plasma for highly stable supercapacitor application

IF 44 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM The Lancet Diabetes & Endocrinology Pub Date : 2024-10-09 DOI:10.1016/j.ceramint.2024.10.120
Silambarasan Kuppusamy, Dinesh Selvakumaran, Premanand Rajaraman, Kumaresan Lakshmanan, Mohd Khairul Bin Ahmad
{"title":"Development of surface-activated La0.6Ca0.4MnO3 perovskite-type electrodes using oxygen plasma for highly stable supercapacitor application","authors":"Silambarasan Kuppusamy, Dinesh Selvakumaran, Premanand Rajaraman, Kumaresan Lakshmanan, Mohd Khairul Bin Ahmad","doi":"10.1016/j.ceramint.2024.10.120","DOIUrl":null,"url":null,"abstract":"This study introduces a novel and efficient approach for synthesizing perovskite-type nanoparticles and advanced plasma surface activation to significantly improve the supercapacitor's performance. High-purity La<sub>0.6</sub>Ca<sub>0.4</sub>MnO<sub>3</sub> (LCMO) perovskite nanoparticles with a crystalline structure were synthesized using a facile coprecipitation technique, followed by an innovative low-pressure DC glow-discharge plasma treatment in an oxygen atmosphere. This plasma surface activation process enhances the surface properties of the nanoparticles and boosts their electrochemical performance, representing a transformative modification method for energy storage materials. Detailed analysis of the synthesized and surface-activated LCMO (SA@LCMO) nanoparticles revealed a well-defined cubic morphology with a remarkable surface area of 95 m<sup>2</sup>/g, as confirmed by TEM and BET analysis. The plasma-treated SA@LCMO electrodes demonstrated superior supercapacitor performance, delivering an impressive specific capacitance of 453 F/g at a current density of 1 A/g more than doubling the 225.8 F/g achieved by untreated LCMO electrodes. Additionally, the SA@LCMO electrodes exhibited exceptional cycle stability, retaining 87% of their capacitance and achieving a coulombic efficiency of 95.2% after 10,000 GCD cycles. The material also showed promising energy storage capabilities, with a maximum energy density of 3.92 Wh/kg at a power density of 170.6 W/kg. These results highlight the transformative impact of plasma surface activation on perovskite nanomaterials, positioning the SA@LCMO as a highly promising candidate for next-generation energy storage technologies with superior energy density, durability, and performance. This study introduces new avenues for surface engineering perovskite-based materials to create scalable high-performance energy storage devices.","PeriodicalId":48790,"journal":{"name":"The Lancet Diabetes & Endocrinology","volume":"16 1","pages":""},"PeriodicalIF":44.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Lancet Diabetes & Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.10.120","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel and efficient approach for synthesizing perovskite-type nanoparticles and advanced plasma surface activation to significantly improve the supercapacitor's performance. High-purity La0.6Ca0.4MnO3 (LCMO) perovskite nanoparticles with a crystalline structure were synthesized using a facile coprecipitation technique, followed by an innovative low-pressure DC glow-discharge plasma treatment in an oxygen atmosphere. This plasma surface activation process enhances the surface properties of the nanoparticles and boosts their electrochemical performance, representing a transformative modification method for energy storage materials. Detailed analysis of the synthesized and surface-activated LCMO (SA@LCMO) nanoparticles revealed a well-defined cubic morphology with a remarkable surface area of 95 m2/g, as confirmed by TEM and BET analysis. The plasma-treated SA@LCMO electrodes demonstrated superior supercapacitor performance, delivering an impressive specific capacitance of 453 F/g at a current density of 1 A/g more than doubling the 225.8 F/g achieved by untreated LCMO electrodes. Additionally, the SA@LCMO electrodes exhibited exceptional cycle stability, retaining 87% of their capacitance and achieving a coulombic efficiency of 95.2% after 10,000 GCD cycles. The material also showed promising energy storage capabilities, with a maximum energy density of 3.92 Wh/kg at a power density of 170.6 W/kg. These results highlight the transformative impact of plasma surface activation on perovskite nanomaterials, positioning the SA@LCMO as a highly promising candidate for next-generation energy storage technologies with superior energy density, durability, and performance. This study introduces new avenues for surface engineering perovskite-based materials to create scalable high-performance energy storage devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用氧等离子体开发表面活性 La0.6Ca0.4MnO3 包晶型电极,以实现高度稳定的超级电容器应用
本研究介绍了一种新颖高效的方法来合成透辉石型纳米粒子,并采用先进的等离子体表面活化技术来显著提高超级电容器的性能。采用简便的共沉淀技术合成了具有晶体结构的高纯度 La0.6Ca0.4MnO3 (LCMO) 包晶石纳米粒子,然后在氧气环境中进行了创新的低压直流辉光放电等离子体处理。这种等离子体表面活化工艺增强了纳米粒子的表面特性,提高了它们的电化学性能,是储能材料的一种变革性改性方法。对合成和表面活化的 LCMO(SA@LCMO)纳米粒子进行的详细分析显示,它们具有清晰的立方体形态,经 TEM 和 BET 分析证实,其表面积高达 95 m2/g。经等离子体处理的 SA@LCMO 电极表现出卓越的超级电容器性能,在电流密度为 1 A/g 时,比电容高达 453 F/g,比未经处理的 LCMO 电极的 225.8 F/g 高出一倍多。此外,SA@LCMO 电极还表现出卓越的循环稳定性,在 10,000 次 GCD 循环后仍能保持 87% 的电容,库仑效率达到 95.2%。这种材料还显示出良好的储能能力,在功率密度为 170.6 W/kg 时,最大能量密度为 3.92 Wh/kg。这些结果凸显了等离子体表面活化对包晶体纳米材料的变革性影响,将 SA@LCMO 定位为下一代储能技术中极具潜力的候选材料,具有卓越的能量密度、耐用性和性能。这项研究为基于包晶材料的表面工程开辟了新的途径,以创建可扩展的高性能储能设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
The Lancet Diabetes & Endocrinology
The Lancet Diabetes & Endocrinology ENDOCRINOLOGY & METABOLISM-
CiteScore
61.50
自引率
1.60%
发文量
371
期刊介绍: The Lancet Diabetes & Endocrinology, an independent journal with a global perspective and strong clinical focus, features original clinical research, expert reviews, news, and opinion pieces in each monthly issue. Covering topics like diabetes, obesity, nutrition, and more, the journal provides insights into clinical advances and practice-changing research worldwide. It welcomes original research advocating change or shedding light on clinical practice, as well as informative reviews on related topics, especially those with global health importance and relevance to low-income and middle-income countries. The journal publishes various content types, including Articles, Reviews, Comments, Correspondence, Health Policy, and Personal Views, along with Series and Commissions aiming to drive positive change in clinical practice and health policy in diabetes and endocrinology.
期刊最新文献
Overweight and obesity among Israeli adolescents and the risk for serious morbidity in early young adulthood: a nationwide retrospective cohort study Associations of obesity with co-morbidities in early adult life Putting wellbeing at the core of diabetes care Setmelanotide for the treatment of severe early-childhood genetic obesity Setmelanotide in patients aged 2–5 years with rare MC4R pathway-associated obesity (VENTURE): a 1 year, open-label, multicenter, phase 3 trial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1