A machine learning framework to generate star cluster realisations

IF 5.4 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Astronomy & Astrophysics Pub Date : 2024-10-11 DOI:10.1051/0004-6361/202450995
George P. Prodan, Mario Pasquato, Giuliano Iorio, Alessandro Ballone, Stefano Torniamenti, Ugo Niccolò Di Carlo, Michela Mapelli
{"title":"A machine learning framework to generate star cluster realisations","authors":"George P. Prodan, Mario Pasquato, Giuliano Iorio, Alessandro Ballone, Stefano Torniamenti, Ugo Niccolò Di Carlo, Michela Mapelli","doi":"10.1051/0004-6361/202450995","DOIUrl":null,"url":null,"abstract":"<i>Context.<i/> Computational astronomy has reached the stage where running a gravitational <i>N<i/>-body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor that remains is the ability to set up physically realistic initial conditions.<i>Aims.<i/> We aim to obtain realistic initial conditions for <i>N<i/>-body simulations by taking advantage of machine learning, with emphasis on reproducing small-scale interstellar distance distributions.<i>Methods.<i/> The computational bottleneck for obtaining such distance distributions is the hydrodynamics of star formation, which ultimately determine the features of the stars, including positions, velocities, and masses. To mitigate this issue, we introduce a new method for sampling physically realistic initial conditions from a limited set of simulations using Gaussian processes.<i>Results.<i/> We evaluated the resulting sets of initial conditions based on whether they meet tests for physical realism. We find that direct sampling based on the learned distribution of the star features fails to reproduce binary systems. Consequently, we show that physics-informed sampling algorithms solve this issue, as they are capable of generating realisations closer to reality.","PeriodicalId":8571,"journal":{"name":"Astronomy & Astrophysics","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy & Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/0004-6361/202450995","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Context. Computational astronomy has reached the stage where running a gravitational N-body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor that remains is the ability to set up physically realistic initial conditions.Aims. We aim to obtain realistic initial conditions for N-body simulations by taking advantage of machine learning, with emphasis on reproducing small-scale interstellar distance distributions.Methods. The computational bottleneck for obtaining such distance distributions is the hydrodynamics of star formation, which ultimately determine the features of the stars, including positions, velocities, and masses. To mitigate this issue, we introduce a new method for sampling physically realistic initial conditions from a limited set of simulations using Gaussian processes.Results. We evaluated the resulting sets of initial conditions based on whether they meet tests for physical realism. We find that direct sampling based on the learned distribution of the star features fails to reproduce binary systems. Consequently, we show that physics-informed sampling algorithms solve this issue, as they are capable of generating realisations closer to reality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生成星群现实的机器学习框架
背景。计算天文学已经发展到可以对恒星系统(如银河系星团)进行引力 N-体模拟计算的阶段,但仍然存在的一个主要限制因素是建立物理上真实的初始条件的能力。我们的目标是利用机器学习的优势,为 N-体模拟获取真实的初始条件,重点是再现小尺度星际距离分布。获得这种距离分布的计算瓶颈是恒星形成的流体力学,它最终决定了恒星的特征,包括位置、速度和质量。为缓解这一问题,我们引入了一种新方法,利用高斯过程从有限的模拟集合中抽取物理上真实的初始条件。我们根据所得到的初始条件集是否符合物理真实性检验标准对其进行了评估。我们发现,基于恒星特征分布的直接采样无法再现双星系统。因此,我们证明了物理信息采样算法可以解决这个问题,因为它们能够生成更接近现实的模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomy & Astrophysics
Astronomy & Astrophysics 地学天文-天文与天体物理
CiteScore
10.20
自引率
27.70%
发文量
2105
审稿时长
1-2 weeks
期刊介绍: Astronomy & Astrophysics is an international Journal that publishes papers on all aspects of astronomy and astrophysics (theoretical, observational, and instrumental) independently of the techniques used to obtain the results.
期刊最新文献
Quantifying the informativity of emission lines to infer physical conditions in giant molecular clouds Evolution of gas envelopes and outgassed atmospheres of rocky planets that formed via pebble accretion ELEPHANT: ExtragaLactic alErt Pipeline for Hostless AstroNomical Transients Discovery of three magnetic helium-rich hot subdwarfs with SALT Dependence of the polytropic behaviour of solar wind protons on temperature anisotropy and plasma β near L1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1