Multiclass Object Classification Using Ultra-Low Resolution Time-of-Flight Sensors

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-09-24 DOI:10.1109/LSENS.2024.3467165
Andrea Fasolino;Paola Vitolo;Rosalba Liguori;Luigi Di Benedetto;Alfredo Rubino;Danilo Pau;Gian Domenico Licciardo
{"title":"Multiclass Object Classification Using Ultra-Low Resolution Time-of-Flight Sensors","authors":"Andrea Fasolino;Paola Vitolo;Rosalba Liguori;Luigi Di Benedetto;Alfredo Rubino;Danilo Pau;Gian Domenico Licciardo","doi":"10.1109/LSENS.2024.3467165","DOIUrl":null,"url":null,"abstract":"Time-of-Flight (ToF) sensors are generally used in combination with red–blue–green sensors in image processing for adding the 3-D to 2-D scenes. Because of their low lateral resolution and contrast, they are scarcely used in object detection or classification. In this work, we demonstrate that ultra-low resolution (URL) ToF sensors with 8×8 pixels can be successfully used as stand-alone sensors for multiclass object detection even if combined with machine learning (ML) models, which can be implemented in a very compact and low-power custom circuit. Specifically, addressing an STMicroelectronics VL53L8CX 8×8 pixel ToF sensor, the designed ToF+ML system is capable to classify up to 10 classes with an overall mean accuracy of 90.21%. The resulting hardware architecture, prototyped on an AMD Xilinx Artix-7 field programmable gate array (FPGA), achieves an energy per inference consumption of 65.6 nJ and a power consumption of 1.095 \n<inline-formula><tex-math>$\\mu \\text{W}$</tex-math></inline-formula>\n at the maximum output data rate of the sensor. These values are lower than the typical energy and power consumption of the sensor, enabling real-time postprocessing of depth images with significantly better performance than the state-of-the-art in the literature.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 10","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10689573","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10689573/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Time-of-Flight (ToF) sensors are generally used in combination with red–blue–green sensors in image processing for adding the 3-D to 2-D scenes. Because of their low lateral resolution and contrast, they are scarcely used in object detection or classification. In this work, we demonstrate that ultra-low resolution (URL) ToF sensors with 8×8 pixels can be successfully used as stand-alone sensors for multiclass object detection even if combined with machine learning (ML) models, which can be implemented in a very compact and low-power custom circuit. Specifically, addressing an STMicroelectronics VL53L8CX 8×8 pixel ToF sensor, the designed ToF+ML system is capable to classify up to 10 classes with an overall mean accuracy of 90.21%. The resulting hardware architecture, prototyped on an AMD Xilinx Artix-7 field programmable gate array (FPGA), achieves an energy per inference consumption of 65.6 nJ and a power consumption of 1.095 $\mu \text{W}$ at the maximum output data rate of the sensor. These values are lower than the typical energy and power consumption of the sensor, enabling real-time postprocessing of depth images with significantly better performance than the state-of-the-art in the literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超低分辨率飞行时间传感器进行多类物体分类
在图像处理中,飞行时间(ToF)传感器通常与红蓝绿传感器结合使用,用于将三维场景添加到二维场景中。由于其横向分辨率和对比度较低,很少用于物体检测或分类。在这项工作中,我们证明了 8×8 像素的超低分辨率(URL)ToF 传感器即使与机器学习(ML)模型相结合,也能成功地作为独立传感器用于多类物体检测,而且可以在非常紧凑和低功耗的定制电路中实现。具体来说,针对意法半导体 VL53L8CX 8×8 像素 ToF 传感器,所设计的 ToF+ML 系统能够对多达 10 个类别进行分类,总体平均准确率为 90.21%。在 AMD Xilinx Artix-7 现场可编程门阵列(FPGA)上进行原型开发的硬件架构在传感器最大输出数据速率下的单位推理能耗为 65.6 nJ,功耗为 1.095 $\mu \text{W}$。这些值均低于传感器的典型能耗和功耗,从而实现了深度图像的实时后处理,其性能明显优于文献中的先进水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
PPY-fMWCNT Nanocomposite-Based Chemicapacitive Biosensor for Ultrasensitive Detection of TBI-Specific GFAP Biomarker in Human Plasma Front Cover IEEE Sensors Council Information Table of Contents IEEE Sensors Letters Subject Categories for Article Numbering Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1