Dynamics analysis of time-delayed nonlinear system with asymmetric stiffness

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2024-10-14 DOI:10.1016/j.chaos.2024.115624
Xinliang Liu, Shaoke Wan, Bin Fang, Xiaohu Li
{"title":"Dynamics analysis of time-delayed nonlinear system with asymmetric stiffness","authors":"Xinliang Liu,&nbsp;Shaoke Wan,&nbsp;Bin Fang,&nbsp;Xiaohu Li","doi":"10.1016/j.chaos.2024.115624","DOIUrl":null,"url":null,"abstract":"<div><div>Time-delayed Duffing oscillators have been widely studied for their rich dynamic properties and their capacity to describe dynamic systems with delays and nonlinearities. However, due to the assumption of symmetry, these oscillators often fail to accurately represent systems influenced by asymmetric stiffness. Analyzing the dynamic characteristics of time-delayed nonlinear systems with asymmetric stiffness, as well as developing effective control strategies, remains particularly challenging. This paper introduces a quadratic stiffness term into the time-delayed Duffing oscillator, resulting in a Time-Delayed Nonlinear System with Asymmetric Stiffness (TD-ASNS). The TD-ASNS is designed to model dynamic systems that incorporate asymmetric stiffness and time delay. The Multiple Scales Method is used to solve the TD-ASNS, and numerical methods are employed to validate the analytical solution. This study examines the influence of time delay and excitation parameters on system response and stability. The time delay term functions like quasi-stiffness and quasi-excitation, shifting the amplitude-frequency response curve along the frequency axis and the resonance backbone, respectively. Similarly, the excitation term shifts the curve along the resonance backbone. This research highlights the critical roles of the delay and excitation parameters in TD-ASNS, which impact dynamic response, stability, and bifurcation behavior. It provides a theoretical foundation for analyzing and controlling the stability of dynamic systems characterized by both asymmetric stiffness and time delay.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924011767","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Time-delayed Duffing oscillators have been widely studied for their rich dynamic properties and their capacity to describe dynamic systems with delays and nonlinearities. However, due to the assumption of symmetry, these oscillators often fail to accurately represent systems influenced by asymmetric stiffness. Analyzing the dynamic characteristics of time-delayed nonlinear systems with asymmetric stiffness, as well as developing effective control strategies, remains particularly challenging. This paper introduces a quadratic stiffness term into the time-delayed Duffing oscillator, resulting in a Time-Delayed Nonlinear System with Asymmetric Stiffness (TD-ASNS). The TD-ASNS is designed to model dynamic systems that incorporate asymmetric stiffness and time delay. The Multiple Scales Method is used to solve the TD-ASNS, and numerical methods are employed to validate the analytical solution. This study examines the influence of time delay and excitation parameters on system response and stability. The time delay term functions like quasi-stiffness and quasi-excitation, shifting the amplitude-frequency response curve along the frequency axis and the resonance backbone, respectively. Similarly, the excitation term shifts the curve along the resonance backbone. This research highlights the critical roles of the delay and excitation parameters in TD-ASNS, which impact dynamic response, stability, and bifurcation behavior. It provides a theoretical foundation for analyzing and controlling the stability of dynamic systems characterized by both asymmetric stiffness and time delay.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有不对称刚度的延时非线性系统的动力学分析
时延达芬振荡器因其丰富的动态特性及其描述具有延迟和非线性的动态系统的能力而被广泛研究。然而,由于对称性假设,这些振荡器往往不能准确地表示受非对称刚度影响的系统。分析具有非对称刚度的时延非线性系统的动态特性,以及开发有效的控制策略,仍然特别具有挑战性。本文在延时达芬振荡器中引入了二次刚度项,从而产生了具有不对称刚度的延时非线性系统(TD-ASNS)。TD-ASNS 设计用于模拟包含非对称刚度和时间延迟的动态系统。多尺度法用于求解 TD-ASNS,并采用数值方法验证解析解。本研究探讨了时间延迟和激励参数对系统响应和稳定性的影响。时间延迟项的作用类似于准刚性和准激励,分别沿频率轴和共振骨干线移动幅频响应曲线。同样,激励项也会使曲线沿共振主干线移动。这项研究强调了延迟和激励参数在 TD-ASNS 中的关键作用,它们会影响动态响应、稳定性和分叉行为。它为分析和控制以非对称刚度和时间延迟为特征的动态系统的稳定性提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Emergence of relaxation beat-waves in genuinely nonlinear Klein-Gordon chain with bi-harmonic parametric excitation A special memristive diode-bridge-based hyperchaotic hyperjerk autonomous circuit with three positive Lyapunov exponents Impulsive quasi-containment control in stochastic heterogeneous multiplex networks A novel spatio-temporal prediction model of epidemic spread integrating cellular automata with agent-based modeling Prescribed-time multi-coalition Nash equilibrium seeking by event-triggered communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1