H. Cheng , Z.Y. Zhang , H. Han , R. Wei , W. Zhao , Y.C. Sun , B.B. Xu , X.L. Hou , J.L. Wang , Y.Q. He , Y. Fu , Q.S. Wang , Y.C. Pan , Z. Zhang , Z. Wang
{"title":"Cross-ancestry meta-genome-wide association studies provide insights to the understanding of semen traits in pigs","authors":"H. Cheng , Z.Y. Zhang , H. Han , R. Wei , W. Zhao , Y.C. Sun , B.B. Xu , X.L. Hou , J.L. Wang , Y.Q. He , Y. Fu , Q.S. Wang , Y.C. Pan , Z. Zhang , Z. Wang","doi":"10.1016/j.animal.2024.101331","DOIUrl":null,"url":null,"abstract":"<div><div>Semen traits play a crucial role in pig reproduction and fertility. However, limited data availability hinder a comprehensive understanding of the genetic mechanisms underlying these traits. In this study, we integrated 597 299 ejaculates and 3 596 sequence data to identify genetic variants and candidate genes related to four semen traits, including sperm progressive motility (<strong>MOT</strong>), semen volume, sperm concentration (<strong>CON</strong>), and effective sperm count (<strong>SUM</strong>). A cross-ancestry meta−genome-wide association study was conducted to detect 163 lead single nucleotide polymorphisms (<strong>SNPs</strong>) associated with MOT, CON, and SUM. Subsequently, transcriptome-wide association studies and colocalisation analyses were integrated to identify 176 candidate genes, many of which have documented roles in spermatogenesis or male mammal semen traits. Our analysis highlighted the potential involvement of <em>CSM5</em>, <em>PDZD9</em>, and <em>LDAF1</em> in regulating semen traits through multiple methods. Finally, to validate the function of significant SNPs, we performed genomic feature best linear unbiased prediction in 348 independent pigs using identified trait-related SNP subsets as genomic features. We found that integrating the top 0.1, 1, and 5% significant SNPs as genomic features could enhance genomic prediction accuracy for CON and MOT compared to traditional genomic best linear unbiased prediction. This study contributes to a comprehensive understanding of the genetic mechanisms of boar semen traits and provides insight for developing genomic selection models.</div></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":"18 11","pages":"Article 101331"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124002684","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semen traits play a crucial role in pig reproduction and fertility. However, limited data availability hinder a comprehensive understanding of the genetic mechanisms underlying these traits. In this study, we integrated 597 299 ejaculates and 3 596 sequence data to identify genetic variants and candidate genes related to four semen traits, including sperm progressive motility (MOT), semen volume, sperm concentration (CON), and effective sperm count (SUM). A cross-ancestry meta−genome-wide association study was conducted to detect 163 lead single nucleotide polymorphisms (SNPs) associated with MOT, CON, and SUM. Subsequently, transcriptome-wide association studies and colocalisation analyses were integrated to identify 176 candidate genes, many of which have documented roles in spermatogenesis or male mammal semen traits. Our analysis highlighted the potential involvement of CSM5, PDZD9, and LDAF1 in regulating semen traits through multiple methods. Finally, to validate the function of significant SNPs, we performed genomic feature best linear unbiased prediction in 348 independent pigs using identified trait-related SNP subsets as genomic features. We found that integrating the top 0.1, 1, and 5% significant SNPs as genomic features could enhance genomic prediction accuracy for CON and MOT compared to traditional genomic best linear unbiased prediction. This study contributes to a comprehensive understanding of the genetic mechanisms of boar semen traits and provides insight for developing genomic selection models.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.