Modeling Escherichia coli inactivation during solar disinfection: Effects of UV intensity, water temperature, and turbidity

IF 6 2区 工程技术 Q2 ENERGY & FUELS Solar Energy Pub Date : 2024-10-15 DOI:10.1016/j.solener.2024.113000
Ekene Jude Nwankwo , Benjamin Nnamdi Ekwueme
{"title":"Modeling Escherichia coli inactivation during solar disinfection: Effects of UV intensity, water temperature, and turbidity","authors":"Ekene Jude Nwankwo ,&nbsp;Benjamin Nnamdi Ekwueme","doi":"10.1016/j.solener.2024.113000","DOIUrl":null,"url":null,"abstract":"<div><div>The study aimed to develop a comprehensive regression model to estimate the inactivation rate constant of <em>Escherichia coli</em> during Solar Disinfection (SODIS) of drinking water. The model incorporates key parameters: UV intensity, water temperature, and turbidity, including their interactions and quadratic terms. The effects of expressing water temperature as maximum absolute temperature (<span><math><msub><mi>T</mi><mi>m</mi></msub></math></span>) and maximum temperature increase (<span><math><mrow><mi>Δ</mi><msub><mi>T</mi><mi>m</mi></msub></mrow></math></span>) on multicollinearity, significance, and model adequacy were also investigated. Experiments were conducted over 5 months to obtain the regression dataset, covering various combinations of these parameters. The results showed that the model using UV intensity and maximum temperature increase (<span><math><mrow><mi>Δ</mi><msub><mi>T</mi><mi>m</mi></msub></mrow></math></span>) as predictors achieved the highest performance (<em>R-square</em>: 0.93, predicted <em>R-square</em>: 0.91, <em>RMSE</em>: 0.261). Using <span><math><mrow><mi>Δ</mi><msub><mi>T</mi><mi>m</mi></msub></mrow></math></span> improved predictive accuracy, reduced collinearity, and enhanced significance compared to <span><math><msub><mi>T</mi><mi>m</mi></msub></math></span>. Turbidity in the range of 1 – 30 NTU was significant in 40 % of models. Interactions were found between UV intensity and temperature, and temperature and turbidity, while no interaction was found between UV intensity and turbidity. The study highlights the importance of considering all possible regression models to avoid misleading interpretations of parameter significance. The developed model can estimate day-to-day fluctuations in SODIS efficiency, exposure period, and SODIS applicability in various regions, providing valuable insights for optimizing SODIS treatment strategies.</div></div>","PeriodicalId":428,"journal":{"name":"Solar Energy","volume":"283 ","pages":"Article 113000"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038092X24006959","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to develop a comprehensive regression model to estimate the inactivation rate constant of Escherichia coli during Solar Disinfection (SODIS) of drinking water. The model incorporates key parameters: UV intensity, water temperature, and turbidity, including their interactions and quadratic terms. The effects of expressing water temperature as maximum absolute temperature (Tm) and maximum temperature increase (ΔTm) on multicollinearity, significance, and model adequacy were also investigated. Experiments were conducted over 5 months to obtain the regression dataset, covering various combinations of these parameters. The results showed that the model using UV intensity and maximum temperature increase (ΔTm) as predictors achieved the highest performance (R-square: 0.93, predicted R-square: 0.91, RMSE: 0.261). Using ΔTm improved predictive accuracy, reduced collinearity, and enhanced significance compared to Tm. Turbidity in the range of 1 – 30 NTU was significant in 40 % of models. Interactions were found between UV intensity and temperature, and temperature and turbidity, while no interaction was found between UV intensity and turbidity. The study highlights the importance of considering all possible regression models to avoid misleading interpretations of parameter significance. The developed model can estimate day-to-day fluctuations in SODIS efficiency, exposure period, and SODIS applicability in various regions, providing valuable insights for optimizing SODIS treatment strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
太阳能消毒过程中的大肠杆菌灭活模型:紫外线强度、水温和浑浊度的影响
该研究旨在建立一个综合回归模型,以估算饮用水太阳能消毒(SODIS)过程中大肠埃希氏菌的灭活率常数。该模型包含以下关键参数紫外线强度、水温和浊度,包括它们之间的相互作用和二次项。此外,还研究了以最高绝对温度 (Tm) 和最高温度增幅 (ΔTm) 表示水温对多重共线性、显著性和模型充分性的影响。通过 5 个月的实验获得了回归数据集,涵盖了这些参数的各种组合。结果表明,使用紫外线强度和最大温升(ΔTm)作为预测因子的模型性能最高(R 方:0.93,预测 R 方:0.91,RMSE:0.261)。与 Tm 相比,使用 ΔTm 提高了预测精度,减少了共线性,并增强了显著性。在 40% 的模型中,浊度在 1 - 30 NTU 范围内具有显著性。紫外线强度与温度、温度与浊度之间存在交互作用,而紫外线强度与浊度之间没有交互作用。这项研究强调了考虑所有可能的回归模型的重要性,以避免误导对参数重要性的解释。所开发的模型可估算出 SODIS 效率、暴露期和 SODIS 在不同地区适用性的逐日波动,为优化 SODIS 处理策略提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy
Solar Energy 工程技术-能源与燃料
CiteScore
13.90
自引率
9.00%
发文量
0
审稿时长
47 days
期刊介绍: Solar Energy welcomes manuscripts presenting information not previously published in journals on any aspect of solar energy research, development, application, measurement or policy. The term "solar energy" in this context includes the indirect uses such as wind energy and biomass
期刊最新文献
Photovoltaic functionality assessment of InPBi-based solar cells using a combination of density functional theory and finite element method analysis The role of masking and aperture size for accurate measurement of performance parameters of DSSCs On the closure relationship among shortwave radiometric measurements under a cold climate during winter Performance evaluation of indirect solar drying system for potato slices: Comparative analysis with open-sun drying method The future of photovoltaic energy potential in Africa under higher emission scenarios: Insights from CMIP6 multi-model ensemble analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1