Nelum K. Wijekoon , Gayan A. Appuhamillage , Rohan S. Dassanayake , Renuka N. Liyanage , Dulanjaya Mapage , Achintha Wijenayake , Eshani L. Lokuge , Suranga M. Rajapaksha , Gayan A. Abeygunawardane , N.D.D. Danuka Senarath
{"title":"Facile fabrication of 3D-printed cellulosic fiber/polylactic acid composites as low-cost and sustainable acoustic panels","authors":"Nelum K. Wijekoon , Gayan A. Appuhamillage , Rohan S. Dassanayake , Renuka N. Liyanage , Dulanjaya Mapage , Achintha Wijenayake , Eshani L. Lokuge , Suranga M. Rajapaksha , Gayan A. Abeygunawardane , N.D.D. Danuka Senarath","doi":"10.1016/j.scenv.2024.100168","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a green, cost-effective and eco-friendly strategy to reduce noise pollution by developing biopolymer-based 3D-printed acoustic panels. We successfully fabricated two series of composites by varying the weight percentage (wt%) of cellulose fibers of water hyacinth (WH) and pineapple leaf (PAL), with polylactic acid (PLA) as the matrix via the heat-press method. All samples were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Physico-mechanical properties, including hardness, tensile, and impact strength, were improved with increasing fiber loading. Filaments of 1 wt% water hyacinth fibers (WHFs) in PLA (1 WHF/PLA) and 1 wt% pineapple leaf fibers (PALFs) in PLA (1 PALF/PLA) were prepared and tested for 3D printability. The sound absorption coefficients (α) of the 3D-printed panels were investigated from 500 to 5000 Hz sound frequency range. The 3D-printed 1 WHF/PLA and 1 PALF/PLA acoustic panels achieve a maximum α (α-max) of 0.55 and 0.83 at 5000 and 4000 Hz, respectively, featuring the first work to report α-max > 0.5 at low fiber loadings in the high-frequency sound range. The tensile strength of the 3D-printed versions is significantly higher than non-3D-printed counterparts and commercial acoustic absorbers. Our data suggest the prepared 3D-printed panels are excellent candidates for acoustic applications at high-frequency noises. This study exhibits a facile, environmentally benign and sustainable approach to construct highly efficient and mechanically robust biopolymer-based 3D-printed sound-proof panels, which have promising potential as green engineering materials. Interestingly, this research also proposes a mitigation technology for the freshwater invader, <em>Eichhornia crassipes</em> (water hyacinths).</div></div>","PeriodicalId":101196,"journal":{"name":"Sustainable Chemistry for the Environment","volume":"8 ","pages":"Article 100168"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry for the Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949839224001111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This work presents a green, cost-effective and eco-friendly strategy to reduce noise pollution by developing biopolymer-based 3D-printed acoustic panels. We successfully fabricated two series of composites by varying the weight percentage (wt%) of cellulose fibers of water hyacinth (WH) and pineapple leaf (PAL), with polylactic acid (PLA) as the matrix via the heat-press method. All samples were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). Physico-mechanical properties, including hardness, tensile, and impact strength, were improved with increasing fiber loading. Filaments of 1 wt% water hyacinth fibers (WHFs) in PLA (1 WHF/PLA) and 1 wt% pineapple leaf fibers (PALFs) in PLA (1 PALF/PLA) were prepared and tested for 3D printability. The sound absorption coefficients (α) of the 3D-printed panels were investigated from 500 to 5000 Hz sound frequency range. The 3D-printed 1 WHF/PLA and 1 PALF/PLA acoustic panels achieve a maximum α (α-max) of 0.55 and 0.83 at 5000 and 4000 Hz, respectively, featuring the first work to report α-max > 0.5 at low fiber loadings in the high-frequency sound range. The tensile strength of the 3D-printed versions is significantly higher than non-3D-printed counterparts and commercial acoustic absorbers. Our data suggest the prepared 3D-printed panels are excellent candidates for acoustic applications at high-frequency noises. This study exhibits a facile, environmentally benign and sustainable approach to construct highly efficient and mechanically robust biopolymer-based 3D-printed sound-proof panels, which have promising potential as green engineering materials. Interestingly, this research also proposes a mitigation technology for the freshwater invader, Eichhornia crassipes (water hyacinths).