Preparation of fly ash zeolite supported ZnO/Co3O4 catalyst for the photocatalytic degradation of xanthate under visible light

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Pub Date : 2024-10-13 DOI:10.1016/j.optmat.2024.116262
Junxiang Wang , Qianqian Song , Xindong Zhou , Ruoyun Li , Qingming He , Jingang Wang , Hui Yang , Haodong Duan , Lin Li
{"title":"Preparation of fly ash zeolite supported ZnO/Co3O4 catalyst for the photocatalytic degradation of xanthate under visible light","authors":"Junxiang Wang ,&nbsp;Qianqian Song ,&nbsp;Xindong Zhou ,&nbsp;Ruoyun Li ,&nbsp;Qingming He ,&nbsp;Jingang Wang ,&nbsp;Hui Yang ,&nbsp;Haodong Duan ,&nbsp;Lin Li","doi":"10.1016/j.optmat.2024.116262","DOIUrl":null,"url":null,"abstract":"<div><div>The development of high-value utilization technology of fly ash plays an important role in promoting environmental protection and social and economic development. In this paper, a novel composite photocatalyst Z-ZnO/Co<sub>3</sub>O<sub>4</sub> is synthesized by loading ZnO/Co<sub>3</sub>O<sub>4</sub> on the surface of fly ash zeolite. In addition, the properties of Z-ZnO/Co<sub>3</sub>O<sub>4</sub> are characterized by variety of methods. The results show that the surface of cubic A-type zeolite is coated with ZnO/Co<sub>3</sub>O<sub>4</sub> composite, forming an open spherical flower-like structure with a typical p-n heterostructure, which plays a positive role in reducing the band gap and the recombination rate of photogenerated electrons and holes of the composite catalyst, thus improving the degradation efficiency of xanthate. The degradation rate toward xanthate of Z-ZnO/Co<sub>3</sub>O<sub>4</sub> is 97.62 % after simulated sunlight irradiation for 120 min under the optimum conditions, which is higher than that of Z-ZnO and Z-Co<sub>3</sub>O<sub>4</sub>, respectively. Meanwhile, the experimental results indicate that h<sup>+</sup> plays a leading role in the catalytic reaction system. Furthermore, degradation rate toward xanthate of Z-ZnO/Co<sub>3</sub>O<sub>4</sub> decreases slightly from 97.62 % to 88.24 % after five cycles, indicating its remarkable durability and stability.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116262"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014459","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-value utilization technology of fly ash plays an important role in promoting environmental protection and social and economic development. In this paper, a novel composite photocatalyst Z-ZnO/Co3O4 is synthesized by loading ZnO/Co3O4 on the surface of fly ash zeolite. In addition, the properties of Z-ZnO/Co3O4 are characterized by variety of methods. The results show that the surface of cubic A-type zeolite is coated with ZnO/Co3O4 composite, forming an open spherical flower-like structure with a typical p-n heterostructure, which plays a positive role in reducing the band gap and the recombination rate of photogenerated electrons and holes of the composite catalyst, thus improving the degradation efficiency of xanthate. The degradation rate toward xanthate of Z-ZnO/Co3O4 is 97.62 % after simulated sunlight irradiation for 120 min under the optimum conditions, which is higher than that of Z-ZnO and Z-Co3O4, respectively. Meanwhile, the experimental results indicate that h+ plays a leading role in the catalytic reaction system. Furthermore, degradation rate toward xanthate of Z-ZnO/Co3O4 decreases slightly from 97.62 % to 88.24 % after five cycles, indicating its remarkable durability and stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
制备粉煤灰沸石支撑的 ZnO/Co3O4 催化剂,用于在可见光下光催化降解黄原酸盐
粉煤灰高值化利用技术的开发对促进环境保护和社会经济发展具有重要作用。本文通过在粉煤灰沸石表面负载 ZnO/Co3O4 合成了一种新型复合光催化剂 Z-ZnO/Co3O4。此外,还采用多种方法对 Z-ZnO/Co3O4 的性质进行了表征。结果表明,立方A型沸石表面包覆ZnO/Co3O4复合材料后,形成了开放的球花状结构,具有典型的p-n异质结构,这对降低复合催化剂的带隙和光生电子与空穴的重组率起到了积极作用,从而提高了黄原酸盐的降解效率。在最佳条件下,Z-ZnO/Co3O4在模拟太阳光照射120分钟后对黄原酸盐的降解率为97.62%,分别高于Z-ZnO和Z-Co3O4。同时,实验结果表明,h+ 在催化反应体系中起主导作用。此外,Z-ZnO/Co3O4 对黄原酸盐的降解率在五个循环后从 97.62% 微降至 88.24%,表明其具有显著的耐久性和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
期刊最新文献
Editorial Board Regulations of oxygen-silicon ratio and microstructure to enhance laser damage resistance of fused silica via oxygen ion implantation Experimental and theoretical studies of a new NLO active organic salt of 2-amino-4-hydroxy-6-methylpyrimidine and 4-hydroxybenzoic acid Orbital momentum mode generation by a tunable diffractive optical element based on lithium niobate The role of Ce3+ Co-doping in the luminescent enhancement of Bi3+ emission and Bi3+→Bi2+ conversion in LiLaP4O12 host
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1