Preparation of MAPbX3 perovskite thin film materials using in-situ doping atomized deposition methods

IF 3.8 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Optical Materials Pub Date : 2024-10-13 DOI:10.1016/j.optmat.2024.116263
Wangchao Wan, Jindou Shi, Chen Zhang, Zheyuan Da, Junnan Wang, Qing Yao, Youlong Xu, Minqiang Wang
{"title":"Preparation of MAPbX3 perovskite thin film materials using in-situ doping atomized deposition methods","authors":"Wangchao Wan,&nbsp;Jindou Shi,&nbsp;Chen Zhang,&nbsp;Zheyuan Da,&nbsp;Junnan Wang,&nbsp;Qing Yao,&nbsp;Youlong Xu,&nbsp;Minqiang Wang","doi":"10.1016/j.optmat.2024.116263","DOIUrl":null,"url":null,"abstract":"<div><div>Thin films of organic halogenated perovskite MAPbX<sub>3</sub> (X = Cl, Br, I or mixed, CH<sub>3</sub>NH<sub>3</sub> = MA) display exceptional optical and electronic properties, rendering them highly promising materials for next-generation optoelectronics. However, achieving a large, thin, and smooth film poses a considerable challenge. Compared with the traditional spraying method, the atomized deposition method is able to break down the precursor solution molecules in the atomization system, and this method produces films with thinner thicknesses(800–1000 nm), smoother surfaces, high light transmittance and low surface roughness. By investigating the deposition time, annealing temperature, and film stability associated with the atomized deposition technique, we determined the optimal process parameters for producing nanometer-thick perovskite films. Specifically, we set the precursor solution concentration to 0.1 mmol/L, the deposition time to 450 s, added PVDF (polyvinylidene fluoride) colloid at a concentration of 3 wt%, and maintained an annealing temperature of 80 °C for 20 min. Ultimately, perovskite films with tunable bandgap were prepared for anti-counterfeit marking applications. This method of preparing perovskite films represents a significant advancement towards their commercial utilization in the realm of optoelectronic materials.</div></div>","PeriodicalId":19564,"journal":{"name":"Optical Materials","volume":"157 ","pages":"Article 116263"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925346724014460","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin films of organic halogenated perovskite MAPbX3 (X = Cl, Br, I or mixed, CH3NH3 = MA) display exceptional optical and electronic properties, rendering them highly promising materials for next-generation optoelectronics. However, achieving a large, thin, and smooth film poses a considerable challenge. Compared with the traditional spraying method, the atomized deposition method is able to break down the precursor solution molecules in the atomization system, and this method produces films with thinner thicknesses(800–1000 nm), smoother surfaces, high light transmittance and low surface roughness. By investigating the deposition time, annealing temperature, and film stability associated with the atomized deposition technique, we determined the optimal process parameters for producing nanometer-thick perovskite films. Specifically, we set the precursor solution concentration to 0.1 mmol/L, the deposition time to 450 s, added PVDF (polyvinylidene fluoride) colloid at a concentration of 3 wt%, and maintained an annealing temperature of 80 °C for 20 min. Ultimately, perovskite films with tunable bandgap were prepared for anti-counterfeit marking applications. This method of preparing perovskite films represents a significant advancement towards their commercial utilization in the realm of optoelectronic materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用原位掺杂雾化沉积法制备 MAPbX3 包晶体薄膜材料
有机卤化过氧化物 MAPbX3(X = Cl、Br、I 或混合,CH3NH3 = MA)薄膜显示出卓越的光学和电子特性,使其成为极具潜力的下一代光电材料。然而,实现大面积、薄而平滑的薄膜是一项相当大的挑战。与传统的喷涂法相比,雾化沉积法能在雾化系统中分解前驱体溶液分子,这种方法能生成厚度更薄(800-1000 nm)、表面更光滑、透光率高和表面粗糙度低的薄膜。通过研究与雾化沉积技术相关的沉积时间、退火温度和薄膜稳定性,我们确定了生产纳米厚的过氧化物薄膜的最佳工艺参数。具体来说,我们将前驱体溶液浓度设定为 0.1 mmol/L,沉积时间设定为 450 秒,加入浓度为 3 wt% 的 PVDF(聚偏氟乙烯)胶体,并将退火温度保持在 80 °C 下 20 分钟。最终,制备出带隙可调的过氧化物薄膜,用于防伪标识应用。这种制备磷光体薄膜的方法标志着在光电材料领域利用磷光体薄膜进行商业化方面取得了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optical Materials
Optical Materials 工程技术-材料科学:综合
CiteScore
6.60
自引率
12.80%
发文量
1265
审稿时长
38 days
期刊介绍: Optical Materials has an open access mirror journal Optical Materials: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The purpose of Optical Materials is to provide a means of communication and technology transfer between researchers who are interested in materials for potential device applications. The journal publishes original papers and review articles on the design, synthesis, characterisation and applications of optical materials. OPTICAL MATERIALS focuses on: • Optical Properties of Material Systems; • The Materials Aspects of Optical Phenomena; • The Materials Aspects of Devices and Applications. Authors can submit separate research elements describing their data to Data in Brief and methods to Methods X.
期刊最新文献
Editorial Board Regulations of oxygen-silicon ratio and microstructure to enhance laser damage resistance of fused silica via oxygen ion implantation Experimental and theoretical studies of a new NLO active organic salt of 2-amino-4-hydroxy-6-methylpyrimidine and 4-hydroxybenzoic acid Orbital momentum mode generation by a tunable diffractive optical element based on lithium niobate The role of Ce3+ Co-doping in the luminescent enhancement of Bi3+ emission and Bi3+→Bi2+ conversion in LiLaP4O12 host
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1