Eugene G. Pashuk , Jiangtao Wu , Ilmutdin M. Abdulagatov
{"title":"Speed of sound measurements of binary n-octane+ ethylcyclohexane mixture at liquid-gas phase transition curve","authors":"Eugene G. Pashuk , Jiangtao Wu , Ilmutdin M. Abdulagatov","doi":"10.1016/j.fluid.2024.114248","DOIUrl":null,"url":null,"abstract":"<div><div>Bio-jet fuel is a key element in the aviation industry to reduce operating costs and environmental impacts. Bio-jet fuel is a complex mixture of four hydrocarbons (<em>n</em>-alkanes, isoalkanes, cycloalkanes and aromatics). In the present work, the speed of sound in pure <em>n</em>-octane, <em>ethylcyclohexane</em>, and their mixtures with six selected compositions of (0.3004, 0.4191, 0.4999, 0.5538, 0.6991, and 0.7852 mole fraction of ethylcyclohexane) has been measured along the l-G saturation curve in the temperature ranges from (286 to 443) K using the pulse method with a constant (acoustic) sounding base. The combined expanded absolute and relative uncertainties (0.95 level of confidence, <em>k</em> = 2) of the temperature, concentration, and speed of sound measurements are estimated to be 20 mK, 0.0006 mole fraction, and 0.2 %, respectively. The measured speed of sound data together with our previous reported density data for the pure component (<em>ethylcyclohexane</em>) and the mixture were used to calculate derived thermodynamic properties, such as isentropic compressibility <span><math><msub><mi>k</mi><mi>S</mi></msub></math></span> and heat capacity ratios <span><math><mfrac><msub><mi>C</mi><mi>P</mi></msub><msub><mi>C</mi><mi>V</mi></msub></mfrac></math></span> as a function of temperature along the l-G saturation curve for the pure components and the mixture for selected concentration of <em>x</em> = 0.8 mole fraction of <em>ethylcyclohexane</em>. The deviation of the measured speed of sound data for the mixture from the linear additive rule has been determined using the pure component data.</div></div>","PeriodicalId":12170,"journal":{"name":"Fluid Phase Equilibria","volume":"589 ","pages":"Article 114248"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Phase Equilibria","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378381224002231","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-jet fuel is a key element in the aviation industry to reduce operating costs and environmental impacts. Bio-jet fuel is a complex mixture of four hydrocarbons (n-alkanes, isoalkanes, cycloalkanes and aromatics). In the present work, the speed of sound in pure n-octane, ethylcyclohexane, and their mixtures with six selected compositions of (0.3004, 0.4191, 0.4999, 0.5538, 0.6991, and 0.7852 mole fraction of ethylcyclohexane) has been measured along the l-G saturation curve in the temperature ranges from (286 to 443) K using the pulse method with a constant (acoustic) sounding base. The combined expanded absolute and relative uncertainties (0.95 level of confidence, k = 2) of the temperature, concentration, and speed of sound measurements are estimated to be 20 mK, 0.0006 mole fraction, and 0.2 %, respectively. The measured speed of sound data together with our previous reported density data for the pure component (ethylcyclohexane) and the mixture were used to calculate derived thermodynamic properties, such as isentropic compressibility and heat capacity ratios as a function of temperature along the l-G saturation curve for the pure components and the mixture for selected concentration of x = 0.8 mole fraction of ethylcyclohexane. The deviation of the measured speed of sound data for the mixture from the linear additive rule has been determined using the pure component data.
期刊介绍:
Fluid Phase Equilibria publishes high-quality papers dealing with experimental, theoretical, and applied research related to equilibrium and transport properties of fluids, solids, and interfaces. Subjects of interest include physical/phase and chemical equilibria; equilibrium and nonequilibrium thermophysical properties; fundamental thermodynamic relations; and stability. The systems central to the journal include pure substances and mixtures of organic and inorganic materials, including polymers, biochemicals, and surfactants with sufficient characterization of composition and purity for the results to be reproduced. Alloys are of interest only when thermodynamic studies are included, purely material studies will not be considered. In all cases, authors are expected to provide physical or chemical interpretations of the results.
Experimental research can include measurements under all conditions of temperature, pressure, and composition, including critical and supercritical. Measurements are to be associated with systems and conditions of fundamental or applied interest, and may not be only a collection of routine data, such as physical property or solubility measurements at limited pressures and temperatures close to ambient, or surfactant studies focussed strictly on micellisation or micelle structure. Papers reporting common data must be accompanied by new physical insights and/or contemporary or new theory or techniques.