Reactive extrusion for efficient preparation of high temperature resistant PA6T/66/BN composites with great thermal management and mechanical properties
{"title":"Reactive extrusion for efficient preparation of high temperature resistant PA6T/66/BN composites with great thermal management and mechanical properties","authors":"Zejun Cao, Shiyuan Zhang, Chen Wang, Yimin Xu, Wei Zhao, Xin Li, Yuancheng Zhang, Zhe Cui, Peng Fu, Xinchang Pang, Xiaomeng Zhang, Minying Liu","doi":"10.1016/j.coco.2024.102121","DOIUrl":null,"url":null,"abstract":"<div><div>High temperature resistant polymer-based composite with high thermal conductivity and great mechanical properties are highly demanded in the field of electronic devices for simultaneously meeting surface mounting process and high-power operation. The key to achieving this goal is to balance the contradiction between the high melt viscosity of high-temperature resistant polymers and the dispersibility of fillers. In this work, the high-performance polyamide 6T/66/hexagonal boron nitride (PA6T/66/BN) composites were fabricated successfully via the method combining prepolymerization and reactive extrusion. Results demonstrated that this method not only significantly improves the preparation efficiency of high temperature resistant polyamide and its composites, but also enables the prepared composites to reach 3.6 W/(m⋅K), over 299 °C and 67.8 MPa in thermal conductivity, melting point and tensile strength respectively. Furthermore, the prepared composite exhibits excellent thermal management effects on LED and CPU. Therefore, the results of this work are of great significance for the efficient preparation and wide application of high-temperature resistant polymer based thermally conductive composites.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"52 ","pages":"Article 102121"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213924003127","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
High temperature resistant polymer-based composite with high thermal conductivity and great mechanical properties are highly demanded in the field of electronic devices for simultaneously meeting surface mounting process and high-power operation. The key to achieving this goal is to balance the contradiction between the high melt viscosity of high-temperature resistant polymers and the dispersibility of fillers. In this work, the high-performance polyamide 6T/66/hexagonal boron nitride (PA6T/66/BN) composites were fabricated successfully via the method combining prepolymerization and reactive extrusion. Results demonstrated that this method not only significantly improves the preparation efficiency of high temperature resistant polyamide and its composites, but also enables the prepared composites to reach 3.6 W/(m⋅K), over 299 °C and 67.8 MPa in thermal conductivity, melting point and tensile strength respectively. Furthermore, the prepared composite exhibits excellent thermal management effects on LED and CPU. Therefore, the results of this work are of great significance for the efficient preparation and wide application of high-temperature resistant polymer based thermally conductive composites.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.