{"title":"A review and environmental impact analysis on the current state of froth flotation on recycling of e-wastes","authors":"Umut Kar, Sheida Nili, Emmanuel Mends, Ehsan Vahidi, Pengbo Chu","doi":"10.1016/j.resconrec.2024.107967","DOIUrl":null,"url":null,"abstract":"<div><div>The current recycling methods to recover metal contents from electronic wastes (e-wastes) are primarily chemical based, such as hydrometallurgy, pyrometallurgy. These methods typically do not involve pre-treatments to remove non-metallic components, which causes increasing reagent and energy consumption, and greenhouse gas emission during recycling. Mechanical methods exploiting differences in material properties, such as gravity, magnetic, electrostatic, can achieve pre-treatment which receive increasing attention. Amongst different mechanical methods, froth flotation utilizing surface hydrophobicity to achieve the desired separation appears to receive less attention but can be very promising to recycle a variety of e-wastes. In this work, the challenges and advances in the recovery of metals from three main e-wastes, including spent lithium-ion batteries (S-LIBs), waste printed circuit boards (WPCBs), and spent photovoltaic solar panels (S-PVs), using flotation were reviewed. The work also conducted a life cycle analysis to assess the environmental impact of flotation in recycling these e-wastes. According to TRACI standards, flotation reagents have the highest environmental impact compared to electricity and water consumption. The study suggests that flotation can serve as an effective pre-treatment operation prior to the chemical treatment to improve the overall the e-waste recycling but future research is still needed.</div></div>","PeriodicalId":21153,"journal":{"name":"Resources Conservation and Recycling","volume":"212 ","pages":"Article 107967"},"PeriodicalIF":11.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Conservation and Recycling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921344924005585","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The current recycling methods to recover metal contents from electronic wastes (e-wastes) are primarily chemical based, such as hydrometallurgy, pyrometallurgy. These methods typically do not involve pre-treatments to remove non-metallic components, which causes increasing reagent and energy consumption, and greenhouse gas emission during recycling. Mechanical methods exploiting differences in material properties, such as gravity, magnetic, electrostatic, can achieve pre-treatment which receive increasing attention. Amongst different mechanical methods, froth flotation utilizing surface hydrophobicity to achieve the desired separation appears to receive less attention but can be very promising to recycle a variety of e-wastes. In this work, the challenges and advances in the recovery of metals from three main e-wastes, including spent lithium-ion batteries (S-LIBs), waste printed circuit boards (WPCBs), and spent photovoltaic solar panels (S-PVs), using flotation were reviewed. The work also conducted a life cycle analysis to assess the environmental impact of flotation in recycling these e-wastes. According to TRACI standards, flotation reagents have the highest environmental impact compared to electricity and water consumption. The study suggests that flotation can serve as an effective pre-treatment operation prior to the chemical treatment to improve the overall the e-waste recycling but future research is still needed.
期刊介绍:
The journal Resources, Conservation & Recycling welcomes contributions from research, which consider sustainable management and conservation of resources. The journal prioritizes understanding the transformation processes crucial for transitioning toward more sustainable production and consumption systems. It highlights technological, economic, institutional, and policy aspects related to specific resource management practices such as conservation, recycling, and resource substitution, as well as broader strategies like improving resource productivity and restructuring production and consumption patterns.
Contributions may address regional, national, or international scales and can range from individual resources or technologies to entire sectors or systems. Authors are encouraged to explore scientific and methodological issues alongside practical, environmental, and economic implications. However, manuscripts focusing solely on laboratory experiments without discussing their broader implications will not be considered for publication in the journal.