Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-10-15 DOI:10.1016/j.commatsci.2024.113444
{"title":"Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression","authors":"","doi":"10.1016/j.commatsci.2024.113444","DOIUrl":null,"url":null,"abstract":"<div><div>This research encompasses a comprehensive exploration of feature compression and graphical representation in the domain of single crystal materials. The study introduces a novel framework known as Material Fingerprint (<strong>MatPrint</strong>), leveraging crystal structure and composition features generated via the Magpie platform. <strong>MatPrint</strong> incorporates 576 crystal and composition features, transformed into 64-bit binary values through the IEEE-754 standard. These features contribute to a nuanced binary graphical representation of materials, emphasizing sensitivity to both composition and crystal structure, particularly beneficial in distinguishing unique graphical profiles for each material, including polymorphs. Additionally, the current MatPrint representations of 2021 compounds and their formation energy were used in a learning process using a pretrained ResNet-18 model to establish a baseline for the efficiency of the representation in data-driven tasks regarding material property prediction, the employed model exhibited a validation loss of 0.18 eV/atom which proposes that the current model can be used extensively with a larger dataset that can be used in different areas of material informatics. Finally, the proposed methodology plays a crucial role in the reversible compression of tabular data derived from the feature generation process, facilitating its use in diverse machine and deep learning models.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624006657","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research encompasses a comprehensive exploration of feature compression and graphical representation in the domain of single crystal materials. The study introduces a novel framework known as Material Fingerprint (MatPrint), leveraging crystal structure and composition features generated via the Magpie platform. MatPrint incorporates 576 crystal and composition features, transformed into 64-bit binary values through the IEEE-754 standard. These features contribute to a nuanced binary graphical representation of materials, emphasizing sensitivity to both composition and crystal structure, particularly beneficial in distinguishing unique graphical profiles for each material, including polymorphs. Additionally, the current MatPrint representations of 2021 compounds and their formation energy were used in a learning process using a pretrained ResNet-18 model to establish a baseline for the efficiency of the representation in data-driven tasks regarding material property prediction, the employed model exhibited a validation loss of 0.18 eV/atom which proposes that the current model can be used extensively with a larger dataset that can be used in different areas of material informatics. Finally, the proposed methodology plays a crucial role in the reversible compression of tabular data derived from the feature generation process, facilitating its use in diverse machine and deep learning models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
材料指纹(MatPrint)介绍:材料图形表示和特征压缩的新方法
这项研究对单晶材料领域的特征压缩和图形表示进行了全面探索。该研究引入了一个名为 "材料指纹"(MatPrint)的新框架,利用通过 Magpie 平台生成的晶体结构和成分特征。MatPrint 包含 576 个晶体和成分特征,通过 IEEE-754 标准转换为 64 位二进制值。这些特征有助于对材料进行细致的二进制图形表示,强调对成分和晶体结构的敏感性,尤其有利于区分每种材料(包括多晶体)的独特图形轮廓。此外,当前的 2021 种化合物 MatPrint 表示法及其形成能被用于使用预训练 ResNet-18 模型的学习过程中,以确定该表示法在有关材料特性预测的数据驱动任务中的效率基线,所使用的模型显示出 0.18 eV/atom 的验证损失,这表明当前的模型可广泛用于更大的数据集,并可用于材料信息学的不同领域。最后,所提出的方法在对特征生成过程中产生的表格数据进行可逆压缩方面发挥了重要作用,有助于将其用于各种机器学习和深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Nanodroplet bouncing behaviors of bonded graphene-carbon nanotube hybrid film Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach MicroSim: A high-performance phase-field solver based on CPU and GPU implementations Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1