{"title":"Differences in succession of bacterial communities during co-cultivation of corn straw with different soils","authors":"Shuang Liu, Qingxin Meng, Yujia Li, Zhigang Wang, Weihui Xu, Yingning Sun, Zhidan Yu, Yunlong Hu","doi":"10.1016/j.ejsobi.2024.103683","DOIUrl":null,"url":null,"abstract":"<div><div>Managing carbon inputs from straw can pave the way towards carbon neutrality and climate change mitigation. Straw decomposition by cooperative microbial actions is an important process of carbon cycling in nature, and in this process, microbial communities are constantly in succession. Soil is rich in microorganisms and can be a source of microbial for straw degradation. In this study, corn straw was mixed with different soil types and incubated in conical flasks for 70 days. Bacterial diversity and community structure were determined using 16S rRNA sequencing. Then, the effects of physicochemical parameters and enzyme activities on the composition of bacterial communities at different stages were evaluated. The results showed that bacterial diversity decreased during co-cultivation. The differences in bacterial communities between all treatments were greater in the later stages, with Pseudomonadota, Actinomycetota, and Bacillota as the major phyla. Among them, the biomarkers at different times for different treatments included <em>Sphingomonas</em>, <em>Mycobacterium</em>, <em>Oceanobacillus</em>, <em>Streptomyces</em>, <em>Pseudomonas</em>, <em>Flavobacterium</em>, and <em>Saccharomonospora</em>. All of them showed cellulose degradation capacity; thus, the organic matter gradually decreased during the co-cultivation. Canonical correspondence analysis (CCA) showed that pH, organic matter (OM), electrical conductivity (EC), cellulase, β-glucosidase, and filter paper (FPase) activities had a significant effect on bacterial communities at different stages. Our findings suggested that soil microbial communities can be an effective source of cellulose-degrading microorganisms, and corn straw co-cultivation with different soil types increased the abundance of cellulose-degrading bacteria, which provides the theoretical basis for efficient cellulose-degrading agent screening.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S116455632400089X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Managing carbon inputs from straw can pave the way towards carbon neutrality and climate change mitigation. Straw decomposition by cooperative microbial actions is an important process of carbon cycling in nature, and in this process, microbial communities are constantly in succession. Soil is rich in microorganisms and can be a source of microbial for straw degradation. In this study, corn straw was mixed with different soil types and incubated in conical flasks for 70 days. Bacterial diversity and community structure were determined using 16S rRNA sequencing. Then, the effects of physicochemical parameters and enzyme activities on the composition of bacterial communities at different stages were evaluated. The results showed that bacterial diversity decreased during co-cultivation. The differences in bacterial communities between all treatments were greater in the later stages, with Pseudomonadota, Actinomycetota, and Bacillota as the major phyla. Among them, the biomarkers at different times for different treatments included Sphingomonas, Mycobacterium, Oceanobacillus, Streptomyces, Pseudomonas, Flavobacterium, and Saccharomonospora. All of them showed cellulose degradation capacity; thus, the organic matter gradually decreased during the co-cultivation. Canonical correspondence analysis (CCA) showed that pH, organic matter (OM), electrical conductivity (EC), cellulase, β-glucosidase, and filter paper (FPase) activities had a significant effect on bacterial communities at different stages. Our findings suggested that soil microbial communities can be an effective source of cellulose-degrading microorganisms, and corn straw co-cultivation with different soil types increased the abundance of cellulose-degrading bacteria, which provides the theoretical basis for efficient cellulose-degrading agent screening.
期刊介绍:
The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.