CoCe composite catalyst for CO2 hydrogenation: Effect of pore structure

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-10-05 DOI:10.1016/j.joei.2024.101856
{"title":"CoCe composite catalyst for CO2 hydrogenation: Effect of pore structure","authors":"","doi":"10.1016/j.joei.2024.101856","DOIUrl":null,"url":null,"abstract":"<div><div>In order to realize the dual carbon goals of “carbon peaking” and “carbon neutrality”, the design and development CO<sub>2</sub> hydrogenation catalyst with high performances is of great significance. In this study, the CoCe composite catalysts were prepared by different methods and used to CO<sub>2</sub> catalytic hydrogenation. The physicochemical properties of the prepared catalysts were characterized by XRD, BET, TEM/HRTEM, and H<sub>2</sub>-TPD. The characterization results indicated that the studied CoCe composite catalytsts with different pore structure can be prepared by different preparation methods. The suitable preparation method can promote Co species to be dissolved into the CeO<sub>2</sub> lattice to form Ce-O-Co solid solution, which can promote the corresponding Co species to be reduced by H<sub>2</sub> to form active Co<sup>0</sup> species. The large specific surface area and developed ordered mesoporous structure of the CoCe-HT catalyst precursor, which was prepared by hard-template method, are conducive to the formation of active Co<sup>0</sup> species and activation of H<sub>2</sub> to produce reactive H species. The CO<sub>2</sub> hydrogenation activity of the studied CoCe composite catalysts follows the following order: CoCe-HT &gt; CoCe-CP &gt; CoCe-CA &gt; CoCe-HY. The CoCe-HT catalyst showed high CO<sub>2</sub> hydrogenation conversion of 53.9 % and good using stability at 360 °C for 600 min. However, the CoCe-CA prepared by complex method has a poor use stability.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124003349","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to realize the dual carbon goals of “carbon peaking” and “carbon neutrality”, the design and development CO2 hydrogenation catalyst with high performances is of great significance. In this study, the CoCe composite catalysts were prepared by different methods and used to CO2 catalytic hydrogenation. The physicochemical properties of the prepared catalysts were characterized by XRD, BET, TEM/HRTEM, and H2-TPD. The characterization results indicated that the studied CoCe composite catalytsts with different pore structure can be prepared by different preparation methods. The suitable preparation method can promote Co species to be dissolved into the CeO2 lattice to form Ce-O-Co solid solution, which can promote the corresponding Co species to be reduced by H2 to form active Co0 species. The large specific surface area and developed ordered mesoporous structure of the CoCe-HT catalyst precursor, which was prepared by hard-template method, are conducive to the formation of active Co0 species and activation of H2 to produce reactive H species. The CO2 hydrogenation activity of the studied CoCe composite catalysts follows the following order: CoCe-HT > CoCe-CP > CoCe-CA > CoCe-HY. The CoCe-HT catalyst showed high CO2 hydrogenation conversion of 53.9 % and good using stability at 360 °C for 600 min. However, the CoCe-CA prepared by complex method has a poor use stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于二氧化碳加氢的 CoCe 复合催化剂:孔结构的影响
为了实现 "碳调峰 "和 "碳中和 "的双碳目标,设计和开发高性能的二氧化碳加氢催化剂具有重要意义。本研究采用不同方法制备了 CoCe 复合催化剂,并将其用于 CO2 催化加氢。通过 XRD、BET、TEM/HRTEM 和 H2-TPD 对所制备催化剂的理化性质进行了表征。表征结果表明,所研究的不同孔结构的 CoCe 复合催化剂可通过不同的制备方法制备。合适的制备方法可以促进 Co 物种溶解到 CeO2 晶格中形成 Ce-O-Co 固溶体,从而促进相应的 Co 物种被 H2 还原形成活性 Co0 物种。硬模板法制备的 CoCe-HT 催化剂前驱体具有较大的比表面积和发达的有序介孔结构,有利于形成活性 Co0 物种并活化 H2 生成活性 H 物种。所研究的 CoCe 复合催化剂的 CO2 加氢活性按以下顺序排列:CoCe-HT;CoCe-CP;CoCe-CA;CoCe-HY。CoCe-HT 催化剂的二氧化碳加氢转化率高达 53.9%,在 360 °C 下 600 分钟的使用稳定性良好。然而,用复合方法制备的 CoCe-CA 的使用稳定性较差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Boosting light olefin production from pyrolysis of low-density polyethylene: A two-stage catalytic process The effects of NH3 pre-cracking and initial temperature on the intrinsic instability and NOx emissions of NH3/bio-syngas/air premixed flames Experimental study of ammonia energy ratio on combustion and emissions from ammonia-gasoline dual-fuel engine at various load conditions Effects of thermophysical properties on heterogeneous reaction dynamics of methane/oxygen mixtures in a micro catalytic combustion chamber Thermodynamic and molecular dynamics study of methane dry reforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1