Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller

Mahmoud Hazhir
{"title":"Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller","authors":"Mahmoud Hazhir","doi":"10.1016/j.nxener.2024.100200","DOIUrl":null,"url":null,"abstract":"<div><div>By increasing the penetration of renewable resources in power systems, which are mostly inverter-based, voltage and frequency control has faced many challenges. Unlike the synchronous generators in large power systems, these sources have no resistance against load changes due to their low inertia, therefore, controlling the voltage and frequency of inverter-based microgrids requires new approaches. In this article, by taking feedback from the output voltage and current of the inverter and using the Proportional Integral controller, the desired control signal to be applied to the inverter is obtained in a way that initially creates a phase and voltage difference between the DGs in the microgrid, the power flow is established in a way that without the need for any communication link, the balance of energy production and consumption is established in an island mode, and at the end, the voltage and frequency of Distributed Generations are restored to their nominal values. The presented control logic is also implemented in Simulink MATLAB software and its results are measured and evaluated.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100200"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X24001054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By increasing the penetration of renewable resources in power systems, which are mostly inverter-based, voltage and frequency control has faced many challenges. Unlike the synchronous generators in large power systems, these sources have no resistance against load changes due to their low inertia, therefore, controlling the voltage and frequency of inverter-based microgrids requires new approaches. In this article, by taking feedback from the output voltage and current of the inverter and using the Proportional Integral controller, the desired control signal to be applied to the inverter is obtained in a way that initially creates a phase and voltage difference between the DGs in the microgrid, the power flow is established in a way that without the need for any communication link, the balance of energy production and consumption is established in an island mode, and at the end, the voltage and frequency of Distributed Generations are restored to their nominal values. The presented control logic is also implemented in Simulink MATLAB software and its results are measured and evaluated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用下垂方法和比例积分控制器对基于逆变器的微电网进行分级控制
随着可再生能源在电力系统中的渗透率不断提高,电压和频率控制面临着许多挑战。与大型电力系统中的同步发电机不同,这些资源由于惯性小,对负载变化没有阻力,因此,控制基于逆变器的微电网的电压和频率需要新的方法。在本文中,通过从逆变器的输出电压和电流中获取反馈信息,并使用比例积分控制器,可以获得应用于逆变器的所需控制信号,从而在微电网中的分布式发电机之间产生相位差和电压差,在不需要任何通信链路的情况下建立电力流,在孤岛模式下建立能源生产和消费的平衡,最后将分布式发电机的电压和频率恢复到额定值。提出的控制逻辑也在 Simulink MATLAB 软件中实现,并对其结果进行了测量和评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential uses of perovskite-based photovoltaics for hydrogen production: A pathway to sustainable energy solutions Experiments on a discretized 3D compound parabolic concentrator with a sensible heat storage Enhanced electrochemical performance of polycrystalline NCM811 cathode at high voltage through Te-doped LiNbO3 coating for lithium-ion batteries Lithium-ion batteries operating at ultrawide temperature range from −90 to +90 °C Influence of phenol-formaldehyde and melamine-formaldehyde resins on the gasification of high-pressure laminate waste materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1