Chunqing Chen , Qibin Lao , Haoyu Yao , Xuan Lu , Qingmei Zhu , Shangjun Cai , Fajin Chen
{"title":"Response of particulate organic matter dynamics to the ocean front induced by typhoon Talim in Zhanjiang Bay","authors":"Chunqing Chen , Qibin Lao , Haoyu Yao , Xuan Lu , Qingmei Zhu , Shangjun Cai , Fajin Chen","doi":"10.1016/j.marenvres.2024.106784","DOIUrl":null,"url":null,"abstract":"<div><div>Typhoons greatly affect ocean hydrodynamics, thereby altering ocean productivity and biogeochemistry. This study used stable isotopes and geochemical indicators of particulate organic matter (POM) to investigate the impact of Typhoon Talim (2023) on marine productivity and POM dynamics in Zhanjiang Bay. During the typhoon, an ocean front formed in the upper bay, resulting in a nearly twofold increased POM and enhanced decomposition of resuspended POM, due to the strengthened vertical mixing. Despite of strong decomposition, the supplementation of terrestrial nutrient inputs maintained minimal changes in chlorophyll in the upper bay. By contrast, in the lower bay, chlorophyll and POM decreased significantly, primarily attributed to decomposition of fresh POM and nitrogen limitation resulting from high-salinity seawater intrusion induced by the typhoon. This study suggests that after typhoons, in the area where the ocean front forms, the decomposition degrades a large amount of resuspended POM, which is not conducive to the burial of organic carbon.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106784"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004458","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Typhoons greatly affect ocean hydrodynamics, thereby altering ocean productivity and biogeochemistry. This study used stable isotopes and geochemical indicators of particulate organic matter (POM) to investigate the impact of Typhoon Talim (2023) on marine productivity and POM dynamics in Zhanjiang Bay. During the typhoon, an ocean front formed in the upper bay, resulting in a nearly twofold increased POM and enhanced decomposition of resuspended POM, due to the strengthened vertical mixing. Despite of strong decomposition, the supplementation of terrestrial nutrient inputs maintained minimal changes in chlorophyll in the upper bay. By contrast, in the lower bay, chlorophyll and POM decreased significantly, primarily attributed to decomposition of fresh POM and nitrogen limitation resulting from high-salinity seawater intrusion induced by the typhoon. This study suggests that after typhoons, in the area where the ocean front forms, the decomposition degrades a large amount of resuspended POM, which is not conducive to the burial of organic carbon.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.