An adhesive interface between hydrogel electrolyte and electrode for low-temperature solid-state capacitive devices

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-10-15 DOI:10.1016/j.est.2024.114061
{"title":"An adhesive interface between hydrogel electrolyte and electrode for low-temperature solid-state capacitive devices","authors":"","doi":"10.1016/j.est.2024.114061","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to conventional liquid systems, solid-state energy storage systems show more attractive application prospects due to improved safety, higher energy density and thermal/electrochemical stability. However, the commercial development of solid-state energy storage devices is hindered by the chemo-mechanically unstable interface between solid-state electrolyte and electrode. The hydrogel electrolytes have attracted extensive attention for this issue owing to their certain adhesion, intrinsic flexibility, and eco-friendliness. Here, we report a universal strategy for adhesive hydrogel electrolyte that simultaneously achieves robust adhesion and anti-freezing properties. The robust adhesion of hydrogel electrolyte is achieved by combining the tough hydrogel matrix with strong interface interactions. Meanwhile, the hydrogel electrolyte equipped with zinc chloride (ZnCl<sub>2</sub>) and lithium chloride (LiCl) ensures high ionic conductivity and stable mechanical elasticity at 25 ~ −60 °C, thus leading to the anti-freezing electrolyte/electrode interface. More encouragingly, the assembled carbon nanotubes (CNTs)||CNTs supercapacitors and Zn||CNTs hybrid capacitors possess excellent capacitive performance at low temperatures, delivering high energy densities of 3.5 Wh kg<sup>−1</sup> for CNTs||CNTs supercapacitors and 51.3 Wh kg<sup>‐</sup><sup>−1</sup> for Zn||CNTs hybrid capacitors at −60 °C, and extraordinary cycling durability with stable capacity retention over 10,000 cycles for CNTs||CNTs supercapacitors and Zn||CNTs hybrid capacitors. We expect this strategy to simplify and guide the development of solid-state energy storage devices operating under extreme conditions.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24036478","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Compared to conventional liquid systems, solid-state energy storage systems show more attractive application prospects due to improved safety, higher energy density and thermal/electrochemical stability. However, the commercial development of solid-state energy storage devices is hindered by the chemo-mechanically unstable interface between solid-state electrolyte and electrode. The hydrogel electrolytes have attracted extensive attention for this issue owing to their certain adhesion, intrinsic flexibility, and eco-friendliness. Here, we report a universal strategy for adhesive hydrogel electrolyte that simultaneously achieves robust adhesion and anti-freezing properties. The robust adhesion of hydrogel electrolyte is achieved by combining the tough hydrogel matrix with strong interface interactions. Meanwhile, the hydrogel electrolyte equipped with zinc chloride (ZnCl2) and lithium chloride (LiCl) ensures high ionic conductivity and stable mechanical elasticity at 25 ~ −60 °C, thus leading to the anti-freezing electrolyte/electrode interface. More encouragingly, the assembled carbon nanotubes (CNTs)||CNTs supercapacitors and Zn||CNTs hybrid capacitors possess excellent capacitive performance at low temperatures, delivering high energy densities of 3.5 Wh kg−1 for CNTs||CNTs supercapacitors and 51.3 Wh kg−1 for Zn||CNTs hybrid capacitors at −60 °C, and extraordinary cycling durability with stable capacity retention over 10,000 cycles for CNTs||CNTs supercapacitors and Zn||CNTs hybrid capacitors. We expect this strategy to simplify and guide the development of solid-state energy storage devices operating under extreme conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低温固态电容器件的水凝胶电解质与电极之间的粘合界面
与传统的液体系统相比,固态储能系统因其更高的安全性、能量密度和热/电化学稳定性而显示出更诱人的应用前景。然而,固态电解质与电极之间的化学机械不稳定界面阻碍了固态储能设备的商业化发展。水凝胶电解质因其良好的粘附性、固有的柔韧性和生态友好性而受到广泛关注。在此,我们报告了一种通用的粘附性水凝胶电解质策略,它能同时实现强大的粘附性和抗冻性。水凝胶电解质的牢固粘附性是通过将坚韧的水凝胶基质与强大的界面相互作用相结合而实现的。同时,含有氯化锌(ZnCl2)和氯化锂(LiCl)的水凝胶电解质确保了在 25 ~ -60 °C 温度下的高离子导电性和稳定的机械弹性,从而实现了电解质/电极界面的抗冻性。更令人鼓舞的是,组装的碳纳米管(CNTs)||CNTs 超级电容器和 Zn||CNTs 混合电容器在低温下具有优异的电容性能,能量密度高达 3.在-60 °C时,CNTs||CNTs超级电容器和Zn||CNTs混合电容器的能量密度分别为3.5 Wh kg-1和51.3 Wh kg-1。我们希望这一战略能够简化和指导在极端条件下工作的固态储能设备的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Improvement of the thermal management of lithium-ion battery with helical tube liquid cooling and phase change material integration Efficiency improvement and pressure pulsation reduction of volute centrifugal pump through diffuser design optimization Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers Accelerating float current measurement with temperature ramps revealing entropy insights A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1