Surface reconstruction of Co3O4/rGO heterointerface enabling high-performance asymmetric supercapacitors

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-10-14 DOI:10.1016/j.est.2024.114128
{"title":"Surface reconstruction of Co3O4/rGO heterointerface enabling high-performance asymmetric supercapacitors","authors":"","doi":"10.1016/j.est.2024.114128","DOIUrl":null,"url":null,"abstract":"<div><div>The rational surface reconstruction of component heterointerfaces is an effective strategy for boosting the electrochemical activity and structural stability of asymmetric supercapacitors. In this study, a Co<sub>3</sub>O<sub>4</sub>/rGO (cobalt oxide/reduced graphene oxide(rGO)) heterostructure was designed using a hydrothermal and annealing strategy. Owing to its abundant electroactive sites, accelerated diffusion reaction kinetics, and strong OH<sup>−</sup>adsorption capability, the optimized Co<sub>3</sub>O<sub>4</sub>/rGO composite delivered an ultrahigh capacitance of 273.3 F/g at 1 A/g. Additionally, density functional theory (DFT) calculations verified the significant charge transfer from Co<sub>3</sub>O<sub>4</sub> to rGO near the heterointerface, achieving obvious charge redistribution and the formation of a space-charge layer. This optimization enhances significantly optimizes OH<sup>−</sup> adsorption and diffusion and improves electrical conductivity, leading to the excellent electrochemical performance of the surface-reconstructed Co<sub>3</sub>O<sub>4</sub>/rGO. More importantly, the all-solid-state asymmetric supercapacitor Co<sub>3</sub>O<sub>4</sub>/rGO//AC (activated carbon) demonstrated an exceptional energy density of 16.47 Wh/kg at a power density of 599 W/kg, along with excellent cycling stability, retaining 91.0 % capacitance after 5000 cycles. Overall, this study provides an effective approach for designing surface-reconstructed heterointerfaces to achieve remarkable electrochemical performance and ensure structural integrity, showcasing significant potential for practical applications in the energy storage market.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":null,"pages":null},"PeriodicalIF":8.9000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24037149","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The rational surface reconstruction of component heterointerfaces is an effective strategy for boosting the electrochemical activity and structural stability of asymmetric supercapacitors. In this study, a Co3O4/rGO (cobalt oxide/reduced graphene oxide(rGO)) heterostructure was designed using a hydrothermal and annealing strategy. Owing to its abundant electroactive sites, accelerated diffusion reaction kinetics, and strong OHadsorption capability, the optimized Co3O4/rGO composite delivered an ultrahigh capacitance of 273.3 F/g at 1 A/g. Additionally, density functional theory (DFT) calculations verified the significant charge transfer from Co3O4 to rGO near the heterointerface, achieving obvious charge redistribution and the formation of a space-charge layer. This optimization enhances significantly optimizes OH adsorption and diffusion and improves electrical conductivity, leading to the excellent electrochemical performance of the surface-reconstructed Co3O4/rGO. More importantly, the all-solid-state asymmetric supercapacitor Co3O4/rGO//AC (activated carbon) demonstrated an exceptional energy density of 16.47 Wh/kg at a power density of 599 W/kg, along with excellent cycling stability, retaining 91.0 % capacitance after 5000 cycles. Overall, this study provides an effective approach for designing surface-reconstructed heterointerfaces to achieve remarkable electrochemical performance and ensure structural integrity, showcasing significant potential for practical applications in the energy storage market.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现高性能不对称超级电容器的 Co3O4/rGO 异质表面重构
合理重构异质界面成分的表面是提高不对称超级电容器电化学活性和结构稳定性的有效策略。本研究采用水热退火策略设计了 Co3O4/rGO(氧化钴/还原氧化石墨烯(rGO))异质结构。由于其丰富的电活性位点、加速的扩散反应动力学和强大的 OH 吸附能力,优化后的 Co3O4/rGO 复合材料在 1 A/g 的条件下实现了 273.3 F/g 的超高电容。此外,密度泛函理论(DFT)计算验证了异质界面附近电荷从 Co3O4 向 rGO 的显著转移,实现了明显的电荷再分布并形成了空间电荷层。这种优化极大地优化了 OH- 的吸附和扩散,提高了导电性,从而使表面重构的 Co3O4/rGO 具有优异的电化学性能。更重要的是,全固态非对称超级电容器 Co3O4/rGO//AC(活性炭)在功率密度为 599 W/kg 的情况下,能量密度高达 16.47 Wh/kg,而且循环稳定性极佳,5000 次循环后仍能保持 91.0% 的电容量。总之,这项研究为设计表面重构异质界面提供了一种有效的方法,既能实现出色的电化学性能,又能确保结构的完整性,在储能市场的实际应用中展现出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Improvement of the thermal management of lithium-ion battery with helical tube liquid cooling and phase change material integration Efficiency improvement and pressure pulsation reduction of volute centrifugal pump through diffuser design optimization Fast kinetics for lithium storage rendered by Li3VO4 nanoparticles/porous N-doped carbon nanofibers Accelerating float current measurement with temperature ramps revealing entropy insights A highly water-soluble phenoxazine quaternary ammonium compound catholyte for pH-neutral aqueous organic redox flow batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1