{"title":"Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model","authors":"","doi":"10.1016/j.jbo.2024.100641","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aims to develop a deep learning model using the 3DResUNet architecture to predict vertebral volumetric bone mineral density (vBMD) from Quantitative Computed Tomography (QCT) scans in patients with spinal metastatic tumors, enhancing osteoporosis screening capabilities.</div></div><div><h3>Methods</h3><div>749 patients with spinal metastatic tumors underwent QCT vertebral vBMD measurements. The dataset was randomly split into training (599 cases) and test sets (150 cases). The 3DResUNet model was trained for vBMD classification and prediction using QCT images processed with automated bone segmentation and ROI extraction.</div></div><div><h3>Results</h3><div>The deep learning model demonstrated strong performance with Spearman correlation coefficients of 0.923 (training set) and 0.918 (test set) between predicted and QCT-measured vBMD values. Bland-Altman analysis showed a slight bias of −1.42 mg/cm<sup>3</sup> (training set) and −1.14 mg/cm<sup>3</sup> (test set) between the model predictions and QCT measurements. The model achieved an area under the curve (AUC) of 0.977 (training set) and 0.966 (test set) for diagnosing Osteoporosis based on vBMD.</div></div><div><h3>Conclusion</h3><div>The developed deep learning model using 3DResUNet effectively predicts vertebral vBMD from QCT scans in patients with spinal metastatic tumors. It provides accurate and automated vBMD measurements, potentially facilitating widespread osteoporosis screening in clinical practice, mainly where DXA availability is limited.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
This study aims to develop a deep learning model using the 3DResUNet architecture to predict vertebral volumetric bone mineral density (vBMD) from Quantitative Computed Tomography (QCT) scans in patients with spinal metastatic tumors, enhancing osteoporosis screening capabilities.
Methods
749 patients with spinal metastatic tumors underwent QCT vertebral vBMD measurements. The dataset was randomly split into training (599 cases) and test sets (150 cases). The 3DResUNet model was trained for vBMD classification and prediction using QCT images processed with automated bone segmentation and ROI extraction.
Results
The deep learning model demonstrated strong performance with Spearman correlation coefficients of 0.923 (training set) and 0.918 (test set) between predicted and QCT-measured vBMD values. Bland-Altman analysis showed a slight bias of −1.42 mg/cm3 (training set) and −1.14 mg/cm3 (test set) between the model predictions and QCT measurements. The model achieved an area under the curve (AUC) of 0.977 (training set) and 0.966 (test set) for diagnosing Osteoporosis based on vBMD.
Conclusion
The developed deep learning model using 3DResUNet effectively predicts vertebral vBMD from QCT scans in patients with spinal metastatic tumors. It provides accurate and automated vBMD measurements, potentially facilitating widespread osteoporosis screening in clinical practice, mainly where DXA availability is limited.
期刊介绍:
The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer.
As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject.
The areas covered by the journal include:
Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment)
Preclinical models of metastasis
Bone microenvironment in cancer (stem cell, bone cell and cancer interactions)
Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics)
Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management)
Bone imaging (clinical and animal, skeletal interventional radiology)
Bone biomarkers (clinical and translational applications)
Radiotherapy and radio-isotopes
Skeletal complications
Bone pain (mechanisms and management)
Orthopaedic cancer surgery
Primary bone tumours
Clinical guidelines
Multidisciplinary care
Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.