Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model

IF 3.4 2区 医学 Q2 Medicine Journal of Bone Oncology Pub Date : 2024-10-09 DOI:10.1016/j.jbo.2024.100641
{"title":"Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model","authors":"","doi":"10.1016/j.jbo.2024.100641","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study aims to develop a deep learning model using the 3DResUNet architecture to predict vertebral volumetric bone mineral density (vBMD) from Quantitative Computed Tomography (QCT) scans in patients with spinal metastatic tumors, enhancing osteoporosis screening capabilities.</div></div><div><h3>Methods</h3><div>749 patients with spinal metastatic tumors underwent QCT vertebral vBMD measurements. The dataset was randomly split into training (599 cases) and test sets (150 cases). The 3DResUNet model was trained for vBMD classification and prediction using QCT images processed with automated bone segmentation and ROI extraction.</div></div><div><h3>Results</h3><div>The deep learning model demonstrated strong performance with Spearman correlation coefficients of 0.923 (training set) and 0.918 (test set) between predicted and QCT-measured vBMD values. Bland-Altman analysis showed a slight bias of −1.42 mg/cm<sup>3</sup> (training set) and −1.14 mg/cm<sup>3</sup> (test set) between the model predictions and QCT measurements. The model achieved an area under the curve (AUC) of 0.977 (training set) and 0.966 (test set) for diagnosing Osteoporosis based on vBMD.</div></div><div><h3>Conclusion</h3><div>The developed deep learning model using 3DResUNet effectively predicts vertebral vBMD from QCT scans in patients with spinal metastatic tumors. It provides accurate and automated vBMD measurements, potentially facilitating widespread osteoporosis screening in clinical practice, mainly where DXA availability is limited.</div></div>","PeriodicalId":48806,"journal":{"name":"Journal of Bone Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bone Oncology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212137424001210","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective

This study aims to develop a deep learning model using the 3DResUNet architecture to predict vertebral volumetric bone mineral density (vBMD) from Quantitative Computed Tomography (QCT) scans in patients with spinal metastatic tumors, enhancing osteoporosis screening capabilities.

Methods

749 patients with spinal metastatic tumors underwent QCT vertebral vBMD measurements. The dataset was randomly split into training (599 cases) and test sets (150 cases). The 3DResUNet model was trained for vBMD classification and prediction using QCT images processed with automated bone segmentation and ROI extraction.

Results

The deep learning model demonstrated strong performance with Spearman correlation coefficients of 0.923 (training set) and 0.918 (test set) between predicted and QCT-measured vBMD values. Bland-Altman analysis showed a slight bias of −1.42 mg/cm3 (training set) and −1.14 mg/cm3 (test set) between the model predictions and QCT measurements. The model achieved an area under the curve (AUC) of 0.977 (training set) and 0.966 (test set) for diagnosing Osteoporosis based on vBMD.

Conclusion

The developed deep learning model using 3DResUNet effectively predicts vertebral vBMD from QCT scans in patients with spinal metastatic tumors. It provides accurate and automated vBMD measurements, potentially facilitating widespread osteoporosis screening in clinical practice, mainly where DXA availability is limited.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用胸部定量 CT 深度学习模型测量脊柱转移性肿瘤患者的骨密度
目标本研究旨在利用 3DResUNet 架构开发一种深度学习模型,以预测脊柱转移性肿瘤患者通过定量计算机断层扫描(QCT)获得的椎体体积骨密度(vBMD),从而提高骨质疏松症筛查能力。数据集随机分为训练集(599 例)和测试集(150 例)。结果深度学习模型表现强劲,预测值和 QCT 测量值之间的 Spearman 相关系数分别为 0.923(训练集)和 0.918(测试集)。Bland-Altman分析显示,模型预测值与QCT测量值之间存在-1.42 mg/cm3(训练集)和-1.14 mg/cm3(测试集)的轻微偏差。该模型根据 vBMD 诊断骨质疏松症的曲线下面积(AUC)分别为 0.977(训练集)和 0.966(测试集)。它提供了准确、自动化的 vBMD 测量结果,可能有助于在临床实践中广泛开展骨质疏松症筛查,主要是在 DXA 可用性有限的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
2.90%
发文量
50
审稿时长
34 days
期刊介绍: The Journal of Bone Oncology is a peer-reviewed international journal aimed at presenting basic, translational and clinical high-quality research related to bone and cancer. As the first journal dedicated to cancer induced bone diseases, JBO welcomes original research articles, review articles, editorials and opinion pieces. Case reports will only be considered in exceptional circumstances and only when accompanied by a comprehensive review of the subject. The areas covered by the journal include: Bone metastases (pathophysiology, epidemiology, diagnostics, clinical features, prevention, treatment) Preclinical models of metastasis Bone microenvironment in cancer (stem cell, bone cell and cancer interactions) Bone targeted therapy (pharmacology, therapeutic targets, drug development, clinical trials, side-effects, outcome research, health economics) Cancer treatment induced bone loss (epidemiology, pathophysiology, prevention and management) Bone imaging (clinical and animal, skeletal interventional radiology) Bone biomarkers (clinical and translational applications) Radiotherapy and radio-isotopes Skeletal complications Bone pain (mechanisms and management) Orthopaedic cancer surgery Primary bone tumours Clinical guidelines Multidisciplinary care Keywords: bisphosphonate, bone, breast cancer, cancer, CTIBL, denosumab, metastasis, myeloma, osteoblast, osteoclast, osteooncology, osteo-oncology, prostate cancer, skeleton, tumour.
期刊最新文献
Clinical decision-making in bone cancer care management and forecast of ICU needs based on computed tomography Progression of vertebral fractures in metastatic melanoma and non-small cell lung cancer patients given immune checkpoint inhibitors Is surgery without curettage effective for periacetabular Metastasis? Insights from a survival study of 93 patients Bone density measurement in patients with spinal metastatic tumors using chest quantitative CT deep learning model Deep bone oncology Diagnostics: Computed tomography based Machine learning for detection of bone tumors from breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1