Effective property method for efficient modeling of non-uniform tissue support in fluid–structure interaction simulation of blood flows

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2024-10-10 DOI:10.1016/j.cmpb.2024.108457
Peishuo Wu, Chi Zhu
{"title":"Effective property method for efficient modeling of non-uniform tissue support in fluid–structure interaction simulation of blood flows","authors":"Peishuo Wu,&nbsp;Chi Zhu","doi":"10.1016/j.cmpb.2024.108457","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Incorporating tissue support in fluid–structure interaction analysis of cardiovascular flows is crucial for accurately representing physiological constraints, achieving realistic vessel wall motion, and minimizing artificial oscillations. The generalized Robin boundary condition, which models tissue support with a spring-damper-type force, uses elastic and damping parameters to represent the viscoelastic behavior of perivascular tissues. Using spatially distributed parameters for tissue support, rather than uniform ones, is more realistic and aligns with the varying properties of vessel walls. However, considering the spatial distribution of both can increase the complexity of preprocessing and numerical implementation. In this work, we develop an effective property method for efficient modeling of non-uniform tissue support and quantifying the contribution of tissue support to the mechanical behaviors of vessel walls.</div></div><div><h3>Methods:</h3><div>Based on the theory of linear viscoelasticity, we derive the mathematical formulas for the effective property method, integrating the parameters of generalized Robin boundary condition into vessel wall properties. The pulse wave velocity incorporating the influence of tissue support is also analyzed. Furthermore, we modify the coupled momentum method, originally formulated for elastic problems, to account for the viscoelastic properties of the vessel wall.</div></div><div><h3>Results:</h3><div>The method is verified with three-dimensional fluid–structure interaction simulations, achieving a maximum relative error of less than 2.2% for flow rate and less than 0.7% for pressure. This method shows that tissue support parameters can be integrated into vessel wall properties, resulting in increased apparent wall stiffness and viscosity, and further changing pressure, flow rate, and wave propagation.</div></div><div><h3>Conclusion:</h3><div>In this study, we develop an effective property method for quantitatively assessing the impact of tissue support and for efficiently modeling non-uniform tissue support. Moreover, this method offers further insights into clinically measured pulse wave velocity, demonstrating that it reflects the combined influence of both vessel wall properties and tissue support.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"257 ","pages":"Article 108457"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260724004504","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective:

Incorporating tissue support in fluid–structure interaction analysis of cardiovascular flows is crucial for accurately representing physiological constraints, achieving realistic vessel wall motion, and minimizing artificial oscillations. The generalized Robin boundary condition, which models tissue support with a spring-damper-type force, uses elastic and damping parameters to represent the viscoelastic behavior of perivascular tissues. Using spatially distributed parameters for tissue support, rather than uniform ones, is more realistic and aligns with the varying properties of vessel walls. However, considering the spatial distribution of both can increase the complexity of preprocessing and numerical implementation. In this work, we develop an effective property method for efficient modeling of non-uniform tissue support and quantifying the contribution of tissue support to the mechanical behaviors of vessel walls.

Methods:

Based on the theory of linear viscoelasticity, we derive the mathematical formulas for the effective property method, integrating the parameters of generalized Robin boundary condition into vessel wall properties. The pulse wave velocity incorporating the influence of tissue support is also analyzed. Furthermore, we modify the coupled momentum method, originally formulated for elastic problems, to account for the viscoelastic properties of the vessel wall.

Results:

The method is verified with three-dimensional fluid–structure interaction simulations, achieving a maximum relative error of less than 2.2% for flow rate and less than 0.7% for pressure. This method shows that tissue support parameters can be integrated into vessel wall properties, resulting in increased apparent wall stiffness and viscosity, and further changing pressure, flow rate, and wave propagation.

Conclusion:

In this study, we develop an effective property method for quantitatively assessing the impact of tissue support and for efficiently modeling non-uniform tissue support. Moreover, this method offers further insights into clinically measured pulse wave velocity, demonstrating that it reflects the combined influence of both vessel wall properties and tissue support.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在血流流体-结构相互作用模拟中有效模拟非均匀组织支撑的有效属性方法
背景与目的:在心血管流动的流固耦合分析中加入组织支撑对于准确表达生理约束、实现逼真的血管壁运动以及最大限度地减少人为振荡至关重要。广义罗宾边界条件用弹簧-阻尼型力模拟组织支撑,使用弹性和阻尼参数来表示血管周围组织的粘弹性行为。使用空间分布参数而非均匀参数来表示组织支撑,更符合实际情况,并与血管壁的不同特性相一致。然而,考虑两者的空间分布会增加预处理和数值计算的复杂性。方法:基于线性粘弹性理论,我们推导出有效属性方法的数学公式,将广义罗宾边界条件的参数整合到血管壁属性中。我们还分析了受组织支撑影响的脉搏波速度。此外,我们修改了最初为弹性问题制定的耦合动量法,以考虑血管壁的粘弹性特性。结果:该方法通过三维流体与结构相互作用模拟进行了验证,流速的最大相对误差小于 2.2%,压力的最大相对误差小于 0.7%。结论:在这项研究中,我们开发了一种有效的属性方法,用于定量评估组织支撑的影响,并对非均匀组织支撑进行有效建模。此外,该方法还为临床测量的脉搏波速度提供了进一步的见解,证明脉搏波速度反映了血管壁特性和组织支持的综合影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Editorial Board A comprehensive benchmarking of a U-Net based model for midbrain auto-segmentation on transcranial sonography DeepForest-HTP: A novel deep forest approach for predicting antihypertensive peptides Positional encoding-guided transformer-based multiple instance learning for histopathology whole slide images classification Localizing the seizure onset zone and predicting the surgery outcomes in patients with drug-resistant epilepsy: A new approach based on the causal network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1