An optimization approach for enhancing energy efficiency, reducing CO2 emission, and improving lubrication reliability in roller bearings using ABC algorithm

Davood Beyralvand , Farzad Banazadeh
{"title":"An optimization approach for enhancing energy efficiency, reducing CO2 emission, and improving lubrication reliability in roller bearings using ABC algorithm","authors":"Davood Beyralvand ,&nbsp;Farzad Banazadeh","doi":"10.1016/j.meaene.2024.100021","DOIUrl":null,"url":null,"abstract":"<div><div>Friction and energy waste pose significant challenges in various industrial processes. Lubrication plays a crucial role in reducing friction and optimizing energy consumption. This study focuses on analyzing, simulating and calculation the oil film thickness, friction levels, energy losses, and CO<sub>2</sub> emissions. The objective is to optimize lubrication conditions to enhance performance, improve energy consumption, and maximize lubrication efficiency for rolling bearings in a centrifugal fan. The simulation utilizes ANSYS CFX software, MATLAB programming. The optimal oil viscosity grade is determined based on two objectives by using artificial bee colony algorithm (ABC): minimizing energy consumption (thus reducing CO<sub>2</sub> emission) and achieving the optimal oil film thickness and viscosity ratio. The findings reveal that, under the current lubrication conditions and normal fan operation, energy losses due to oil friction amount to 36.3 MWh per year, with CO<sub>2</sub> emissions resulting from power losses reaching 18,750 kg per year. By transitioning to the optimized oil grade, energy savings of 1.08 MWh per year and a corresponding reduction of 557 kg in CO<sub>2</sub> emissions per year can be achieved.</div></div>","PeriodicalId":100897,"journal":{"name":"Measurement: Energy","volume":"4 ","pages":"Article 100021"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement: Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950345024000216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Friction and energy waste pose significant challenges in various industrial processes. Lubrication plays a crucial role in reducing friction and optimizing energy consumption. This study focuses on analyzing, simulating and calculation the oil film thickness, friction levels, energy losses, and CO2 emissions. The objective is to optimize lubrication conditions to enhance performance, improve energy consumption, and maximize lubrication efficiency for rolling bearings in a centrifugal fan. The simulation utilizes ANSYS CFX software, MATLAB programming. The optimal oil viscosity grade is determined based on two objectives by using artificial bee colony algorithm (ABC): minimizing energy consumption (thus reducing CO2 emission) and achieving the optimal oil film thickness and viscosity ratio. The findings reveal that, under the current lubrication conditions and normal fan operation, energy losses due to oil friction amount to 36.3 MWh per year, with CO2 emissions resulting from power losses reaching 18,750 kg per year. By transitioning to the optimized oil grade, energy savings of 1.08 MWh per year and a corresponding reduction of 557 kg in CO2 emissions per year can be achieved.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 ABC 算法提高滚子轴承能效、减少二氧化碳排放和提高润滑可靠性的优化方法
摩擦和能源浪费是各种工业流程面临的重大挑战。润滑在减少摩擦和优化能源消耗方面发挥着至关重要的作用。本研究的重点是分析、模拟和计算油膜厚度、摩擦水平、能量损失和二氧化碳排放。目的是优化润滑条件,以提高离心风机滚动轴承的性能、改善能耗并最大限度地提高润滑效率。模拟采用 ANSYS CFX 软件和 MATLAB 编程。通过人工蜂群算法(ABC),基于两个目标确定了最佳润滑油粘度等级:能耗最小化(从而减少二氧化碳排放)以及达到最佳油膜厚度和粘度比。研究结果表明,在当前的润滑条件和风机正常运行的情况下,每年因油摩擦造成的能量损失达 36.3 兆瓦时,每年因功率损失造成的二氧化碳排放量达 18,750 千克。通过过渡到优化的机油等级,每年可节约 1.08 兆瓦时的能源,并相应减少 557 千克的二氧化碳排放量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mixed magnesium, cobalt, nickel, copper, and zinc sulfates as thermochemical heat storage materials Optimization and kinetic study of glucose production from agricultural waste Virtual inertia extraction from a DC bus capacitor in a three−phase DC/AC inverter-based microgrid with seamless synchronisation operation modes Special issue on advanced measurements of batteries, fuel cells and other energy storage devices Biosynthesis of NiO nanoparticles using Senna occidentalis leaves extract: Effects of annealing temperature and antibacterial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1