Haijuan Qin , Zhiwei Huang , Xue Mi , Shuai Zhang , Han-Yu Liu , Jia-Ning Wang , Mingming Xue , Zhiqi Lao , Yang Yang
{"title":"Preparation of a thioxoimidazolidin-linked sialoside BSA conjugate for the inhibition of influenza virus","authors":"Haijuan Qin , Zhiwei Huang , Xue Mi , Shuai Zhang , Han-Yu Liu , Jia-Ning Wang , Mingming Xue , Zhiqi Lao , Yang Yang","doi":"10.1016/j.carres.2024.109287","DOIUrl":null,"url":null,"abstract":"<div><div>A novel thioxoimidazolidin-linked sialoside bovine serum albumin (<strong>WM-BSA</strong>) conjugate was synthesized and evaluated as an inhibitor of influenza virus hemagglutinin (HA) and neuraminidase (NA). The multivalent conjugate was prepared by the attachment of thioxoimidazolidin-sialoside monomer (<strong>WM</strong>) to BSA <em>via</em> adipate linker. Surface plasmon resonance analysis revealed that <strong>WM-BSA</strong> exhibited potent binding to recombinant influenza HA and NA proteins, with dissociation constants in the submicromolar range. <strong>WM-BSA</strong> also demonstrated inhibitory activities in the low micromolar range against HA and NA proteins from multiple influenza strains. Investigation of cytopathic effects in infected MDCK cells indicated that <strong>WM-BSA</strong> possessed antiviral activity with EC<sub>50</sub> values of 35–55 μM. The multivalent presentation of sialosides on the BSA scaffold significantly enhanced both the binding affinity and degree of inhibition compared to the monomeric compound <strong>WM</strong>. These results demonstrate the potential of multivalent sialoside-protein conjugate as a platform for developing novel anti-influenza agent.</div></div>","PeriodicalId":9415,"journal":{"name":"Carbohydrate Research","volume":"545 ","pages":"Article 109287"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Research","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008621524002660","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel thioxoimidazolidin-linked sialoside bovine serum albumin (WM-BSA) conjugate was synthesized and evaluated as an inhibitor of influenza virus hemagglutinin (HA) and neuraminidase (NA). The multivalent conjugate was prepared by the attachment of thioxoimidazolidin-sialoside monomer (WM) to BSA via adipate linker. Surface plasmon resonance analysis revealed that WM-BSA exhibited potent binding to recombinant influenza HA and NA proteins, with dissociation constants in the submicromolar range. WM-BSA also demonstrated inhibitory activities in the low micromolar range against HA and NA proteins from multiple influenza strains. Investigation of cytopathic effects in infected MDCK cells indicated that WM-BSA possessed antiviral activity with EC50 values of 35–55 μM. The multivalent presentation of sialosides on the BSA scaffold significantly enhanced both the binding affinity and degree of inhibition compared to the monomeric compound WM. These results demonstrate the potential of multivalent sialoside-protein conjugate as a platform for developing novel anti-influenza agent.
期刊介绍:
Carbohydrate Research publishes reports of original research in the following areas of carbohydrate science: action of enzymes, analytical chemistry, biochemistry (biosynthesis, degradation, structural and functional biochemistry, conformation, molecular recognition, enzyme mechanisms, carbohydrate-processing enzymes, including glycosidases and glycosyltransferases), chemical synthesis, isolation of natural products, physicochemical studies, reactions and their mechanisms, the study of structures and stereochemistry, and technological aspects.
Papers on polysaccharides should have a "molecular" component; that is a paper on new or modified polysaccharides should include structural information and characterization in addition to the usual studies of rheological properties and the like. A paper on a new, naturally occurring polysaccharide should include structural information, defining monosaccharide components and linkage sequence.
Papers devoted wholly or partly to X-ray crystallographic studies, or to computational aspects (molecular mechanics or molecular orbital calculations, simulations via molecular dynamics), will be considered if they meet certain criteria. For computational papers the requirements are that the methods used be specified in sufficient detail to permit replication of the results, and that the conclusions be shown to have relevance to experimental observations - the authors'' own data or data from the literature. Specific directions for the presentation of X-ray data are given below under Results and "discussion".