Yihan Fu , Shuran Li , Mengze Li , Liang Cheng , Weidong Zhu , Yinglin Ke
{"title":"A novel method for through-thickness reinforcement of laminated composites using discrete micro-polarization-induced fiber injection (DMFI) approach","authors":"Yihan Fu , Shuran Li , Mengze Li , Liang Cheng , Weidong Zhu , Yinglin Ke","doi":"10.1016/j.compscitech.2024.110912","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional through-thickness reinforcement methods for laminated composites, such as Z-pin, encounter issues with in-plane property degradation and complex fabrication processes. To achieve rapid and low-damage reinforcement, a novel approach using short-chopped carbon fibers (SCFs) to form a micron-diameter interlaminate structure has been proposed. This method employs a discrete micro-polarization-induced fiber injection (DMFI) technique, where polarized SCFs are electrostatically oriented and injected at high speeds into pre-formed holes in the laminates. The insertion process of SCFs was thoroughly investigated, with optimal interlaminate conditions determined using high-speed cameras and other equipment. The toughening mechanism of SCFs was explored through various characterization methods, including metallurgical microscopy. This innovative method offers several advantages over the traditional Z-pin reinforced method. Notably, present method eliminates the need for prefabrication of Z-pins and fully leverages the excellent mechanical properties of individual carbon fiber in short length. It provides superior interlaminar mechanical properties, achieving a 392 % improvement compared to the control group and a 15 % improvement compared to 0.1 mm Z-pin reinforcement at the same insertion volume fraction. Additionally, it has minimal impact on the in-plane properties of the laminates, with only a 3.6 % reduction in tensile strength and a 4.1 % reduction in compression strength. Furthermore, it is environmentally friendly, allowing for the recycling and reuse of waste SCFs.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"258 ","pages":"Article 110912"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004822","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional through-thickness reinforcement methods for laminated composites, such as Z-pin, encounter issues with in-plane property degradation and complex fabrication processes. To achieve rapid and low-damage reinforcement, a novel approach using short-chopped carbon fibers (SCFs) to form a micron-diameter interlaminate structure has been proposed. This method employs a discrete micro-polarization-induced fiber injection (DMFI) technique, where polarized SCFs are electrostatically oriented and injected at high speeds into pre-formed holes in the laminates. The insertion process of SCFs was thoroughly investigated, with optimal interlaminate conditions determined using high-speed cameras and other equipment. The toughening mechanism of SCFs was explored through various characterization methods, including metallurgical microscopy. This innovative method offers several advantages over the traditional Z-pin reinforced method. Notably, present method eliminates the need for prefabrication of Z-pins and fully leverages the excellent mechanical properties of individual carbon fiber in short length. It provides superior interlaminar mechanical properties, achieving a 392 % improvement compared to the control group and a 15 % improvement compared to 0.1 mm Z-pin reinforcement at the same insertion volume fraction. Additionally, it has minimal impact on the in-plane properties of the laminates, with only a 3.6 % reduction in tensile strength and a 4.1 % reduction in compression strength. Furthermore, it is environmentally friendly, allowing for the recycling and reuse of waste SCFs.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.