Preliminary study of a compact epithermal neutron absolute flux intensity measurement system for real-time in-vivo dose monitoring in boron neutron capture therapy
{"title":"Preliminary study of a compact epithermal neutron absolute flux intensity measurement system for real-time in-vivo dose monitoring in boron neutron capture therapy","authors":"Jiye Qiu , Daisuke Hatano , Yulin Ge , Nikolaos Voulgaris , Kohei Sagara , Zhaopeng Qiao , Shingo Tamaki , Sachie Kusaka , Takushi Takata , Isao Murata","doi":"10.1016/j.radmeas.2024.107308","DOIUrl":null,"url":null,"abstract":"<div><div>Boron neutron capture therapy (BNCT) is a radiotherapy technology that selectively kills tumor cells via the <sup>10</sup>B(n, <em>α</em>)<sup>7</sup>Li reactions. Epithermal neutrons (0.5 eV–10 keV) are emitted and converted into thermal neutrons, which have a larger neutron capture reaction cross-section, by slowing down in the human body before reaching the tumor. Recently, the development of an epithermal neutron absolute flux intensity measurement technique has become crucial for real-time in-vivo dose monitoring in BNCT. In this study, a concept for a measurement system consisting of multiple compact scintillator with optical fibers detectors covered with neutron absorbers of various thicknesses is proposed. The designed system achieves a consistent response to epithermal neutrons with a theoretical coefficient of variation not higher than 5% for both LiCAF and EJ-254 scintillators. The theoretical feasibility of the proposed measurement system was investigated by an irradiation experiment carried out at the heavy water neutron irradiation facility at the Kyoto University Reactor. The experimental results indicated that further improvement and refinement are necessary to meet the high accuracy and precision required for real-time dose monitoring in clinical applications.</div></div>","PeriodicalId":21055,"journal":{"name":"Radiation Measurements","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Measurements","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350448724002567","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Boron neutron capture therapy (BNCT) is a radiotherapy technology that selectively kills tumor cells via the 10B(n, α)7Li reactions. Epithermal neutrons (0.5 eV–10 keV) are emitted and converted into thermal neutrons, which have a larger neutron capture reaction cross-section, by slowing down in the human body before reaching the tumor. Recently, the development of an epithermal neutron absolute flux intensity measurement technique has become crucial for real-time in-vivo dose monitoring in BNCT. In this study, a concept for a measurement system consisting of multiple compact scintillator with optical fibers detectors covered with neutron absorbers of various thicknesses is proposed. The designed system achieves a consistent response to epithermal neutrons with a theoretical coefficient of variation not higher than 5% for both LiCAF and EJ-254 scintillators. The theoretical feasibility of the proposed measurement system was investigated by an irradiation experiment carried out at the heavy water neutron irradiation facility at the Kyoto University Reactor. The experimental results indicated that further improvement and refinement are necessary to meet the high accuracy and precision required for real-time dose monitoring in clinical applications.
期刊介绍:
The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.
Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.