The heterogeneous structure facilitates the rapid transport of lithium ions in novel single-crystal CoMn-MOF derivatives

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL International Journal of Hydrogen Energy Pub Date : 2024-10-15 DOI:10.1016/j.ijhydene.2024.10.142
{"title":"The heterogeneous structure facilitates the rapid transport of lithium ions in novel single-crystal CoMn-MOF derivatives","authors":"","doi":"10.1016/j.ijhydene.2024.10.142","DOIUrl":null,"url":null,"abstract":"<div><div>Transition metal sulphides and oxides have been identified as potential cathode materials for lithium-ion batteries with high initial capacity and high selectivity. Nevertheless, the low ground conductivity and volume expansion have constituted significant obstacles to the advancement of this field of study. In this study, the heterostructure CoMn₂O₄/MnS₂@C1-2-2 of MnS₂ and CoMn₂O₄ was obtained through high-temperature (Ar. 450 °C) calcination of a novel red single crystal [CoMn(TDC)]<sub>n</sub> precursor. The resulting structure exhibited excellent lithium-ion transport properties. The biphasic heterostructure with a porous carbon framework is capable of forming a multitude of phase interfaces and conductive pathways, which facilitate charge migration, enhance conductivity, and expand the contact area with the electrolyte, thereby augmenting the charge transfer capability. The CoMn<sub>2</sub>O<sub>4</sub>MnS<sub>2</sub>@C1-2-2 composite displays remarkable lithium storage capabilities, with a specific capacity of 689 mA h g<sup>−1</sup> even after 400 cycles at 0.5 A g<sup>−1</sup>.</div></div>","PeriodicalId":337,"journal":{"name":"International Journal of Hydrogen Energy","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Hydrogen Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360319924043404","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal sulphides and oxides have been identified as potential cathode materials for lithium-ion batteries with high initial capacity and high selectivity. Nevertheless, the low ground conductivity and volume expansion have constituted significant obstacles to the advancement of this field of study. In this study, the heterostructure CoMn₂O₄/MnS₂@C1-2-2 of MnS₂ and CoMn₂O₄ was obtained through high-temperature (Ar. 450 °C) calcination of a novel red single crystal [CoMn(TDC)]n precursor. The resulting structure exhibited excellent lithium-ion transport properties. The biphasic heterostructure with a porous carbon framework is capable of forming a multitude of phase interfaces and conductive pathways, which facilitate charge migration, enhance conductivity, and expand the contact area with the electrolyte, thereby augmenting the charge transfer capability. The CoMn2O4MnS2@C1-2-2 composite displays remarkable lithium storage capabilities, with a specific capacity of 689 mA h g−1 even after 400 cycles at 0.5 A g−1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新型单晶 CoMn-MOF 衍生物中的异质结构有助于锂离子的快速传输
过渡金属硫化物和氧化物已被确定为锂离子电池的潜在阴极材料,具有高初始容量和高选择性。然而,低地电导率和体积膨胀是这一研究领域取得进展的重大障碍。在本研究中,通过对新型红色单晶 [CoMn(TDC)]n 前驱体进行高温(Ar. 450 ℃)煅烧,获得了由 MnS₂ 和 CoMn₂O₄ 组成的异质结构 CoMn₂O₄/MnS₂@C1-2-2。这种结构具有优异的锂离子传输特性。这种具有多孔碳框架的双相异质结构能够形成多种相界面和导电通道,从而促进电荷迁移、提高导电性并扩大与电解质的接触面积,从而增强电荷转移能力。CoMn2O4MnS2@C1-2-2 复合材料显示出卓越的锂存储能力,即使在 0.5 A g-1 的条件下循环使用 400 次后,比容量仍高达 689 mA h g-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Hydrogen Energy
International Journal of Hydrogen Energy 工程技术-环境科学
CiteScore
13.50
自引率
25.00%
发文量
3502
审稿时长
60 days
期刊介绍: The objective of the International Journal of Hydrogen Energy is to facilitate the exchange of new ideas, technological advancements, and research findings in the field of Hydrogen Energy among scientists and engineers worldwide. This journal showcases original research, both analytical and experimental, covering various aspects of Hydrogen Energy. These include production, storage, transmission, utilization, enabling technologies, environmental impact, economic considerations, and global perspectives on hydrogen and its carriers such as NH3, CH4, alcohols, etc. The utilization aspect encompasses various methods such as thermochemical (combustion), photochemical, electrochemical (fuel cells), and nuclear conversion of hydrogen, hydrogen isotopes, and hydrogen carriers into thermal, mechanical, and electrical energies. The applications of these energies can be found in transportation (including aerospace), industrial, commercial, and residential sectors.
期刊最新文献
Calculating active power for water electrolyzers in dynamic operation: Simple, isn’t it? A composite oxygen electrode with high oxygen reduction and evolution activities for reversible solid oxide cells Optimization of aluminum hydroxide catalyst for efficient hydrogen generation from aluminum-water reaction Facile synthesis of nitrogen-containing multiwalled carbon nanotubes as a worth metal-free electrocatalyst for hydrogen evolution reaction and semicarbazide oxidation The heterogeneous structure facilitates the rapid transport of lithium ions in novel single-crystal CoMn-MOF derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1