Jixin Jiang;Fanxing Li;Siyang Yu;Fan Yang;Jixiao Liu;Jian Wang;Wei Yan;Jialin Du
{"title":"Deterministic-Iterative Integrated Phase Retrieval","authors":"Jixin Jiang;Fanxing Li;Siyang Yu;Fan Yang;Jixiao Liu;Jian Wang;Wei Yan;Jialin Du","doi":"10.1109/LPT.2024.3470797","DOIUrl":null,"url":null,"abstract":"In multi-plane phase retrieval imaging, the accuracy and efficiency of phase retrieval algorithm are usually mutually restrictive. Specifically, deterministic algorithms struggle to achieve sufficient accuracy, while iterative algorithms consume excessive time, thereby limiting their practical application. To address this issue, we propose a deterministic-iterative integrated phase retrieval algorithm, that is, an approximate phase, which could be quickly obtained by the deterministic algorithm, is imported as an initial value into the iterative algorithm to retrieve more accurate result efficiently. To demonstrate the effectiveness of this algorithm, we simulate its performance under various iterations and diffraction distances. Additionally, experiments are conducted using a pure-phase USAF1951 target and fixed mouse fibroblasts to verify its feasibility, high accuracy, and rapid iterative convergence speed. Integrating the deterministic and iterative algorithms, this method offers a novel approach for enhancing phase retrieval.","PeriodicalId":13065,"journal":{"name":"IEEE Photonics Technology Letters","volume":"36 22","pages":"1341-1344"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Photonics Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700749/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In multi-plane phase retrieval imaging, the accuracy and efficiency of phase retrieval algorithm are usually mutually restrictive. Specifically, deterministic algorithms struggle to achieve sufficient accuracy, while iterative algorithms consume excessive time, thereby limiting their practical application. To address this issue, we propose a deterministic-iterative integrated phase retrieval algorithm, that is, an approximate phase, which could be quickly obtained by the deterministic algorithm, is imported as an initial value into the iterative algorithm to retrieve more accurate result efficiently. To demonstrate the effectiveness of this algorithm, we simulate its performance under various iterations and diffraction distances. Additionally, experiments are conducted using a pure-phase USAF1951 target and fixed mouse fibroblasts to verify its feasibility, high accuracy, and rapid iterative convergence speed. Integrating the deterministic and iterative algorithms, this method offers a novel approach for enhancing phase retrieval.
期刊介绍:
IEEE Photonics Technology Letters addresses all aspects of the IEEE Photonics Society Constitutional Field of Interest with emphasis on photonic/lightwave components and applications, laser physics and systems and laser/electro-optics technology. Examples of subject areas for the above areas of concentration are integrated optic and optoelectronic devices, high-power laser arrays (e.g. diode, CO2), free electron lasers, solid, state lasers, laser materials'' interactions and femtosecond laser techniques. The letters journal publishes engineering, applied physics and physics oriented papers. Emphasis is on rapid publication of timely manuscripts. A goal is to provide a focal point of quality engineering-oriented papers in the electro-optics field not found in other rapid-publication journals.