Y. Yoldas;A. Onen;K. Alawasa;A. El Haffar;R. Ahshan;Md. R. Islam;S.M. Muyeen;N. Noorfatima;J. Jung
{"title":"A Framework-Based Multi-Agent Coordination for Enhanced Microgrid Energy Management at the Secondary Control Layer","authors":"Y. Yoldas;A. Onen;K. Alawasa;A. El Haffar;R. Ahshan;Md. R. Islam;S.M. Muyeen;N. Noorfatima;J. Jung","doi":"10.1109/TASC.2024.3468074","DOIUrl":null,"url":null,"abstract":"The effective operation of a microgrid (MG) depends on seamless coordination among agents in energy management systems. A pivotal element in this coordination is the multi-agent coordinator, strategically positioned as an intermediate controller between the primary and tertiary control levels. Its role is to derive optimal setpoints from data obtained at the tertiary control level and convey them to the relevant agents at the primary control level. This study presents a novel optimization model for the multi-agent energy management system, aimed at enhancing real-time economic dispatch in the secondary control by managing active and reactive power. Instead of relying on a conventional centralized MG controller, the proposed framework employs multi-agent coordination to improve the reliability, stability, and economic performance of MG operations.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"34 8","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10693478/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The effective operation of a microgrid (MG) depends on seamless coordination among agents in energy management systems. A pivotal element in this coordination is the multi-agent coordinator, strategically positioned as an intermediate controller between the primary and tertiary control levels. Its role is to derive optimal setpoints from data obtained at the tertiary control level and convey them to the relevant agents at the primary control level. This study presents a novel optimization model for the multi-agent energy management system, aimed at enhancing real-time economic dispatch in the secondary control by managing active and reactive power. Instead of relying on a conventional centralized MG controller, the proposed framework employs multi-agent coordination to improve the reliability, stability, and economic performance of MG operations.
期刊介绍:
IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.