Yande Liu, Dawei Jiang, Mahmoud M. Hessien, M. H. H. Mahmoud, Miaojun Xu, Zeinhom M. El-Bahy
{"title":"Enhanced thermal and mechanical properties of boron-modified phenolic resin composites with multifiller system for aerospace applications","authors":"Yande Liu, Dawei Jiang, Mahmoud M. Hessien, M. H. H. Mahmoud, Miaojun Xu, Zeinhom M. El-Bahy","doi":"10.1007/s42114-024-00961-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to investigate the properties of boron-modified phenolic resin (BPR) composites reinforced with glass fiber (GF) and mica, SiO<sub>2</sub>, and glass powder (MSG) for potential aerospace applications. The BPR/MSG/GF composites exhibited improved mechanical strength, reduced shrinkage, and enhanced insulation properties at high temperatures. Specifically, exposed at 1000 °C, the impact strength increased by 108%, bending strength increased by 113%, shrinkage was reduced by 7.42%, and insulation properties were enhanced by 12.3%. Thermogravimetric analysis (TGA) revealed enhanced thermal stability, with a residue rate of 89.91% at 800 °C. The addition of glass powder, functioning as a fluxing agent, resulted in the densification of the ceramic layer. X-ray diffraction analysis (XRD) demonstrated that mica undergoes eutectic reaction with other fillers and glass powder to form the final ceramic layer. These findings indicate that BPR/MSG/GF composites can be optimized for high-performance applications requiring excellent heat resistance and mechanical strength. Further optimization of filler content and processing conditions can enhance the performance of these composites for specific applications.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"7 5","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-00961-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to investigate the properties of boron-modified phenolic resin (BPR) composites reinforced with glass fiber (GF) and mica, SiO2, and glass powder (MSG) for potential aerospace applications. The BPR/MSG/GF composites exhibited improved mechanical strength, reduced shrinkage, and enhanced insulation properties at high temperatures. Specifically, exposed at 1000 °C, the impact strength increased by 108%, bending strength increased by 113%, shrinkage was reduced by 7.42%, and insulation properties were enhanced by 12.3%. Thermogravimetric analysis (TGA) revealed enhanced thermal stability, with a residue rate of 89.91% at 800 °C. The addition of glass powder, functioning as a fluxing agent, resulted in the densification of the ceramic layer. X-ray diffraction analysis (XRD) demonstrated that mica undergoes eutectic reaction with other fillers and glass powder to form the final ceramic layer. These findings indicate that BPR/MSG/GF composites can be optimized for high-performance applications requiring excellent heat resistance and mechanical strength. Further optimization of filler content and processing conditions can enhance the performance of these composites for specific applications.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.