Vedashree M. Sharma, T. V. Valsaraj, Heggar Venkataramana Sudeep, Shyamprasad Kodimule, Joby Jacob
{"title":"Sustained Release of Liposomal Caffeine Using Novel Natural Fiber Interlaced Liposomal Technology: Development and Structural Characterisation","authors":"Vedashree M. Sharma, T. V. Valsaraj, Heggar Venkataramana Sudeep, Shyamprasad Kodimule, Joby Jacob","doi":"10.1007/s12247-024-09874-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>Caffeine is a naturally occurring central nervous system stimulant, susceptible to absorb faster in the body, and new design strategies are needed to enhance its sustainable release and stability. The development of new vehicles for drug delivery and sustained release is an important field of pharmaceutical research. Hence the goal of this study is to create a Fiber Interlaced Liposome (FIL), as a vehicle for a sustained delivery platform for caffeine using surface modified liposomes by fruit fibers which offers additional protection against degradation.</p><h3>Method</h3><p>The powdered FIL-Caffeine was prepared in aqueous phase by addition of the ingredients in sequential order followed by spray-drying. The optimised formulation was analysed for its structural and surface morphological characteristics by using FTIR, SEM, TEM, XRD, Zeta potential, DSC and in vitro release studies also conducted to confirm the formation of true liposomes.</p><h3>Result</h3><p>The FIL-Caffeine powder is seen to have a spherical shape, free of any aggregation from the morphological studies by SEM and TEM with fibers intact outside. The Zeta potential (-40.9 mV) reveals the liposomal stability with formation of true liposomes having particle size distribution 150–500 nm. Encapsulation efficiency (74%), thermal stability by DSC, in vitro sustained release study, and stability in simulated gastrointestinal fluids were also done. The sustained release of caffeine was ensured in FIL formulation (43.26%) as compared to the normal caffeine (100%) after 3 h of dialysis for an 8 h study. Furthermore, the FIL-Caffeine demonstrated enhanced stability and release in the simulated gastric fluid (9.84% for FIL-Caffeine in comparison with 5.22% of caffeine) and in the simulated intestinal fluid (9.83% for FIL-Caffeine in comparison with 8.28% of caffeine) proved the stability of the formulation.</p><h3>Conclusion</h3><p>The study results suggest that the surface modified liposomal encapsulation by fruit fibers enhanced the sustained release of caffeine and higher stability in stomach acid as well as gastro intestinal fluids which may be favourable for prolonged release applications of the FIL formulations.</p></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"19 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09874-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Caffeine is a naturally occurring central nervous system stimulant, susceptible to absorb faster in the body, and new design strategies are needed to enhance its sustainable release and stability. The development of new vehicles for drug delivery and sustained release is an important field of pharmaceutical research. Hence the goal of this study is to create a Fiber Interlaced Liposome (FIL), as a vehicle for a sustained delivery platform for caffeine using surface modified liposomes by fruit fibers which offers additional protection against degradation.
Method
The powdered FIL-Caffeine was prepared in aqueous phase by addition of the ingredients in sequential order followed by spray-drying. The optimised formulation was analysed for its structural and surface morphological characteristics by using FTIR, SEM, TEM, XRD, Zeta potential, DSC and in vitro release studies also conducted to confirm the formation of true liposomes.
Result
The FIL-Caffeine powder is seen to have a spherical shape, free of any aggregation from the morphological studies by SEM and TEM with fibers intact outside. The Zeta potential (-40.9 mV) reveals the liposomal stability with formation of true liposomes having particle size distribution 150–500 nm. Encapsulation efficiency (74%), thermal stability by DSC, in vitro sustained release study, and stability in simulated gastrointestinal fluids were also done. The sustained release of caffeine was ensured in FIL formulation (43.26%) as compared to the normal caffeine (100%) after 3 h of dialysis for an 8 h study. Furthermore, the FIL-Caffeine demonstrated enhanced stability and release in the simulated gastric fluid (9.84% for FIL-Caffeine in comparison with 5.22% of caffeine) and in the simulated intestinal fluid (9.83% for FIL-Caffeine in comparison with 8.28% of caffeine) proved the stability of the formulation.
Conclusion
The study results suggest that the surface modified liposomal encapsulation by fruit fibers enhanced the sustained release of caffeine and higher stability in stomach acid as well as gastro intestinal fluids which may be favourable for prolonged release applications of the FIL formulations.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.