Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2024-06-02 DOI:10.1002/adpr.202400045
Kaveh Delfanazari
{"title":"Ultrafast Terahertz Superconductor Van der Waals Metamaterial Photonic Switch","authors":"Kaveh Delfanazari","doi":"10.1002/adpr.202400045","DOIUrl":null,"url":null,"abstract":"<p>The high-temperature layered superconductor (HTS) BSCCO is one of the key quantum material platforms in THz science and technology. Compact, stable, and reliable BSCCO THz photonic integrated circuit components can be developed to effectively and efficiently control and manipulate THz wave radiation, especially for future communication systems and network applications. Herein, the design, simulation, and modeling of ultrafast THz metamaterial photonic integrated circuits are reported on a few nanometer-thick HTS BSCCO van der Waals (vdWs), capable of the active modulation of phase with constant transmission coefficient over a narrow-frequency range. Meanwhile, the metamaterial circuit works as an amplitude modulator without significantly changing the phase in a different frequency band. Under the application of ultrashort optical pulses, the transient modulation dynamics of the THz metamaterial offer a fast-switching timescale of 50 ps. The dynamics of picosecond light–matter interaction, Cooper pairs breaking, photoinduced quasiparticles generation and recombination, phonon bottleneck effect, and emission and relaxation of bosons in BSCCO vdW metamaterial arrays are discussed for the potential application of multifunctional superconducting photonic integrated circuits in communication and quantum technologies.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 10","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The high-temperature layered superconductor (HTS) BSCCO is one of the key quantum material platforms in THz science and technology. Compact, stable, and reliable BSCCO THz photonic integrated circuit components can be developed to effectively and efficiently control and manipulate THz wave radiation, especially for future communication systems and network applications. Herein, the design, simulation, and modeling of ultrafast THz metamaterial photonic integrated circuits are reported on a few nanometer-thick HTS BSCCO van der Waals (vdWs), capable of the active modulation of phase with constant transmission coefficient over a narrow-frequency range. Meanwhile, the metamaterial circuit works as an amplitude modulator without significantly changing the phase in a different frequency band. Under the application of ultrashort optical pulses, the transient modulation dynamics of the THz metamaterial offer a fast-switching timescale of 50 ps. The dynamics of picosecond light–matter interaction, Cooper pairs breaking, photoinduced quasiparticles generation and recombination, phonon bottleneck effect, and emission and relaxation of bosons in BSCCO vdW metamaterial arrays are discussed for the potential application of multifunctional superconducting photonic integrated circuits in communication and quantum technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超快太赫兹超导体范德华超材料光子开关
高温层状超导体(HTS)BSCCO 是太赫兹科学与技术领域的关键量子材料平台之一。开发紧凑、稳定、可靠的 BSCCO 太赫兹光子集成电路元件,可有效控制和操纵太赫兹波辐射,尤其适用于未来的通信系统和网络应用。本文报告了超快太赫兹超材料光子集成电路的设计、仿真和建模,该集成电路基于几纳米厚的 HTS BSCCO 范德华(vdWs),能够在窄频率范围内以恒定的传输系数主动调制相位。同时,超材料电路可作为振幅调制器工作,而不会在不同频段显著改变相位。在超短光脉冲的作用下,太赫兹超材料的瞬态调制动力学具有 50 ps 的快速切换时间尺度。本文讨论了 BSCCO vdW 超材料阵列中皮秒光物质相互作用、库珀对断裂、光诱导的准粒子产生和重组、声子瓶颈效应以及玻色子的发射和弛豫等动力学问题,以探讨多功能超导光子集成电路在通信和量子技术中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Masthead Maximizing the Electromagnetic Efficiency of Spintronic Terahertz Emitters High-Power GaN-Based Blue Laser Diodes Degradation Investigation and Anti-aging Solution Masthead Structural Colors Derived from the Combination of Core–Shell Particles with Cellulose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1