{"title":"(Ann. Phys. 10/2024)","authors":"","doi":"10.1002/andp.202470022","DOIUrl":null,"url":null,"abstract":"<p><b>Self-Organizing Trivalent Spin Network</b></p><p>Spin dynamics in a Loop Quantum Gravity model with self-organized criticality leads to avalanches. Employing ergodic concepts, a perimeter–entropy relation is derived for the dimensionally reduced black hole. This entropy originates from the excitation–relaxation spin dynamics during avalanche cycles. For further details, see article number 2400109 by Christine C. Dantas.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":7896,"journal":{"name":"Annalen der Physik","volume":"536 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/andp.202470022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annalen der Physik","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/andp.202470022","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Self-Organizing Trivalent Spin Network
Spin dynamics in a Loop Quantum Gravity model with self-organized criticality leads to avalanches. Employing ergodic concepts, a perimeter–entropy relation is derived for the dimensionally reduced black hole. This entropy originates from the excitation–relaxation spin dynamics during avalanche cycles. For further details, see article number 2400109 by Christine C. Dantas.
期刊介绍:
Annalen der Physik (AdP) is one of the world''s most renowned physics journals with an over 225 years'' tradition of excellence. Based on the fame of seminal papers by Einstein, Planck and many others, the journal is now tuned towards today''s most exciting findings including the annual Nobel Lectures. AdP comprises all areas of physics, with particular emphasis on important, significant and highly relevant results. Topics range from fundamental research to forefront applications including dynamic and interdisciplinary fields. The journal covers theory, simulation and experiment, e.g., but not exclusively, in condensed matter, quantum physics, photonics, materials physics, high energy, gravitation and astrophysics. It welcomes Rapid Research Letters, Original Papers, Review and Feature Articles.