A study on loading multiple epitopes with a single peptide

IF 6.8 3区 医学 Q1 VIROLOGY Journal of Medical Virology Pub Date : 2024-10-14 DOI:10.1002/jmv.70004
Chunyan Guo, Cuixiang Xu, Qing Feng, Xin Xie, Yan Li, Xiangrong Zhao, Jun Hu, Senbiao Fang, Lijun Shang
{"title":"A study on loading multiple epitopes with a single peptide","authors":"Chunyan Guo,&nbsp;Cuixiang Xu,&nbsp;Qing Feng,&nbsp;Xin Xie,&nbsp;Yan Li,&nbsp;Xiangrong Zhao,&nbsp;Jun Hu,&nbsp;Senbiao Fang,&nbsp;Lijun Shang","doi":"10.1002/jmv.70004","DOIUrl":null,"url":null,"abstract":"<p>Epitopes, the basic functional units of antigens, hold great significance in the field of immunology. However, the structure and composition of epitopes and their interactions with antibodies remain unclear, which limits in-depth studies on epitopes and the development of subunit vaccines. In a previous study on the localization of anti-influenza HA monoclonal antibodies (mAbs), three strains with different characteristics reacted with the same peptide. In this study, by conventional immunological assays, computer homology modeling, and molecular docking simulations, we found that (1) the peptide could bind to three strains of mAbs with different reaction characteristics utilizing different combinations of immunodominant groups. (2) By computer molecular docking and simulation methods, the immunodominant groups on the two peptides could be combined into a multi-epitope peptide bound to six strains of mAbs. We established a method for multi-epitope peptide recombination from these immunodominant groups. (3) The immune effect of the recombinant multi-epitope peptide was better than that of a single peptide. Our findings facilitate the understanding of the composition of antigen epitopes and provide a theoretical and experimental basis for developing polyvalent vaccines and understanding immune responses at the molecular level.</p>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 10","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70004","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Epitopes, the basic functional units of antigens, hold great significance in the field of immunology. However, the structure and composition of epitopes and their interactions with antibodies remain unclear, which limits in-depth studies on epitopes and the development of subunit vaccines. In a previous study on the localization of anti-influenza HA monoclonal antibodies (mAbs), three strains with different characteristics reacted with the same peptide. In this study, by conventional immunological assays, computer homology modeling, and molecular docking simulations, we found that (1) the peptide could bind to three strains of mAbs with different reaction characteristics utilizing different combinations of immunodominant groups. (2) By computer molecular docking and simulation methods, the immunodominant groups on the two peptides could be combined into a multi-epitope peptide bound to six strains of mAbs. We established a method for multi-epitope peptide recombination from these immunodominant groups. (3) The immune effect of the recombinant multi-epitope peptide was better than that of a single peptide. Our findings facilitate the understanding of the composition of antigen epitopes and provide a theoretical and experimental basis for developing polyvalent vaccines and understanding immune responses at the molecular level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于用单一多肽加载多个表位的研究
表位是抗原的基本功能单位,在免疫学领域具有重要意义。然而,表位的结构和组成及其与抗体的相互作用仍不清楚,这限制了对表位的深入研究和亚单位疫苗的开发。在之前一项关于抗流感 HA 单克隆抗体(mAbs)定位的研究中,三种不同特性的菌株与同一种肽发生了反应。在这项研究中,通过传统的免疫学试验、计算机同源建模和分子对接模拟,我们发现:(1)利用不同的免疫优势基团组合,该多肽可与三种具有不同反应特征的 mAbs 株系结合。(2)通过计算机分子对接和模拟方法,可以将两种多肽上的免疫显性基团组合成一种多表位多肽,与六株 mAbs 结合。我们建立了由这些免疫显性基团重组多表位肽的方法。(3) 重组多表位肽的免疫效果优于单一表位肽。我们的发现有助于理解抗原表位的组成,并为开发多价疫苗和理解分子水平的免疫反应提供了理论和实验基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medical Virology
Journal of Medical Virology 医学-病毒学
CiteScore
23.20
自引率
2.40%
发文量
777
审稿时长
1 months
期刊介绍: The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells. The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists. The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.
期刊最新文献
Concerns on a New Varicella Vaccine Introduced in Korea Molecular Analysis of Coxsackievirus B2 Associated With Severe Symptoms of the Central Nervous System Rhinovirus in pediatric respiratory infections: More than a simple cold Epidemiological Characteristics of Neuro-Specific Antibodies Following Viral Infections Identifying Gaps in Congenital CMV Detection—Implications for the Recent European Consensus Guidelines on Congenital CMV Infection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1